• 제목/요약/키워드: The improved soil

검색결과 1,107건 처리시간 0.032초

Effect of slag on stabilization of sewage sludge and organic soil

  • Kaya, Zulkuf
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.689-707
    • /
    • 2016
  • Soil stabilization is one of the useful method of ground improvement for soil with low bearing capacity and high settlement and unrequired swelling potential. Generally, the stabilization is carried out by adding some solid materials. The main objective of this research was to investigate the feasibility of stabilization of organic soils and sewage sludge to obtain low cost alternative embankment material by the addition of two different slags. Slags were used as a replacement for weak soil at ratios of 0%, 25%, 50%, 75% and 100%, where sewage sludge and organic soil were blended with slags separately. The maximum dry unit weights and the optimum water contents for all soil mixtures were determined. In order to investigate the influence of the slags on the strength of sewage sludge and organic soil, and to obtain the optimal mix design; compaction tests, the California bearing ratio (CBR) test, unconfined compressive strength (UCS) test, hydraulic conductivity test (HCT) and pH tests were carried out on slag-soil specimens. Unconfined compressive tests were performed on non-cured samples and those cured at 7 days. The test results obtained from untreated specimens were compared to tests results obtained from soil samples treated with slag. Laboratory tests results indicated that blending slags with organic soil or sewage sludge improved the engineering properties of organic or sewage sludge. Therefore, it is concluded that slag can be potentially used as a stabilizer to improve the properties of organic soils and sewage sludge.

거품을 이용한 부직포의 방오방혈가공 (Soil Resistant and Blood Repellent Finishes of Nonwoven Fabrics Using Foam)

  • 이정민;배기서;노덕길;전병열
    • 한국염색가공학회지
    • /
    • 제4권3호
    • /
    • pp.74-81
    • /
    • 1992
  • Chemical bonded nonwoven fabric for apparel use and spunlaced nonwoven fabric for medical use were finished for soil resistance and blood replellency with fluorochemicals utilizing foam finishing technology (FFT) and conventional padding application techniques. The FFT process improved soil and abrasion resistance properties of nonwoven fabrics compared with the conventional padding process. Excellent water-oil-saline-alcohol repellency values and water impact penetration values were obtained in the spunlaced nonwoven fabrics with both techniques.

  • PDF

Growth and Development of Platycodon grandiflorus under Sensor-based Soil Moisture Control on Open Farmland and Pot Conditions

  • Lee, Ye-Jin;Kim, Kyeong-Soo;Lim, So-Hee;Yu, Young-Beob;Bae, Chang-Hyu
    • 한국자원식물학회지
    • /
    • 제34권6호
    • /
    • pp.608-615
    • /
    • 2021
  • Soil moisture control system including soil sensing and automatic water supply chain was constructed on open farmland and pot conditions. Soil moisture was controlled by the system showing over the soil moisture contents except 40% treatment. EC was gradually decreased by increasing cultivation days. On applying this system to control soil moisture, the growth and development characters of the bellflower were improved compared with control, cultivation without the automatic irrigation. Of the growth and development characters, plant height with water treatments was higher than that of control in 1st-year plants. Moreover, numbers of branch were increased by the increased soil moisture on farmland and pot condition. Capsule numbers for seed were best at 20%, 30% soil moisture treatment in 1st-year plants, and 20% to 50% treatment in 2nd-year plants. The construction of automatic soil moisture control system provide fundamental data for plant growth and development on open farmland soil condition.

지반개량재 전면토체와 지오그리드 보강 배면토체로 형성된 복합보강토의 거동특성 (Behavior Characteristics of Composite Reinforced Earth with Improved Soil Surface and Geogrid-reinforced Backfill)

  • 방인황;김태헌;김유성;김재홍
    • 한국지반환경공학회 논문집
    • /
    • 제17권12호
    • /
    • pp.27-34
    • /
    • 2016
  • 많은 급경사 보강성토 또는 보강토벽 구조물의 장점은 토지 이용의 효율성이나 현장에서 사용하는 공법 비용들의 경제성 때문에 점점 높아지고 있다. 보강토체의 인장력을 이용한 기존 보강토옹벽 공법들은 자연사면의 경사보다 훨씬 급경사에 설계할 수 있도록 발전해 왔다. 지반개량재를 사용하여 급경사의 전면벽체를 보강한 방법은 최근에 상당히 효율적인 토지 사용을 위해 많이 공사되고 있다. 본 연구는 지오그리드를 매설한 뒷채움 흙과 지반개량재로 보강한 전면벽체로 구성한 복합보강토 옹벽을 소개한다. 급경사를 이루고 있는 전면벽체의 안정성을 위해 현장시공 계측과 수치해석으로 비교 검증과 분석하였다. 또한 현장계측은 14개월 동안의 변위측정으로 안정성에 대한 관측으로 수치해석과 비교하였다. 현장시험 시공에서 일반적인 수직하중에 의한 수평거동은 최대 15mm(대략 0.2%)가 발생하였지만 안전범위인 0.5% 이내를 보여주고 있다. 이러한 결과들을 토대로 최대수평변위의 안정성의 신뢰도와 지반개량재 벽면공의 타당성에 대한 가능성을 검증하였다.

함양 상림 복원을 위한 식생 및 입지특성 분석 II (Analysis on the Plant and Site Characteristics for the Restoration of Sangrim Woodlands in Hamyang-Gun, Korea II)

  • 박재현
    • 한국환경복원기술학회지
    • /
    • 제13권6호
    • /
    • pp.173-184
    • /
    • 2010
  • This study was conducted to establish a management plan for the Sangrim Woodlands restoration by analyzing the vegetation survey and the site characteristics of the Sangrim Woodlands Natural Monument (Natural Monument 154) in Hamyang-Gun, Gyoungsangnam-Do, Korea. According to the vegetation analysis, the species diversity by the location of Sangrim was higher near forest (1.000) than near urban (0.358) areas. Although forest occupied 53% of the Sangrim woodlands area, it is still insufficient, requiring to transform arable land, lawn, or house areas to the forest within the woodlands. Soil bulk density was increased in access areas frequently used by public, while it was decreased in closed areas. Soil hardness at 0-10 cm soil depth was generally improved in the closed areas, while became worse in the public access areas compared with the soil hardness in 2004.

The Effect of Dredged Soil Improvement on Soil Chemical Conditions and Plant Growth at the Slope of Saemangeum Sea Dike

  • Park, Chanwoo;Koo, Namin;Kwon, Jino;Lim, Joo-Hoon;Jeong, Yong-Ho;Kim, Jung-Ho
    • 한국토양비료학회지
    • /
    • 제47권1호
    • /
    • pp.16-22
    • /
    • 2014
  • This study was conducted to determine the changes in soil chemical properties and the growth of seedling according to the different dredged soil improving methods at slope of Saemangeum sea dike. Undersea dredged soil was improved by five different methods. Seedlings of Ulmus davidiana var. japonica, Chionanthus retusa, Celtis sinensis, and Pinus thunbergii were planted after 9 month of experience site installation, then soil pH, NaCl concentration in soil, soil organic matter (SOM), and survival rate and height of seedling was measured. Initial soil pH was highest in the control plot but it decreased to the similar level with other soil improving plots after 35 months. There were no differences in NaCl concentration between the control and soil improving plots, and it showed decreasing tendency during the study period. In the control plot, initial SOM was lowest among that of other plots during the study period. The survival rate of 36 months after planting of P. thunbergii was highest among the species. The gap of the tree growth of P. thunbergii between the control plot and the soil improving plots was small, however, other species showed relatively higher tree height in the soil improving plots than the control plots. Creation forest with P. thunbergii might be a cost effective afforestation in coastal reclaimed land since it rarely needs additional improvement of dredged soil.

독성미량원소의 작물흡수에 대한 토양인자의 영향 (Effect of Soil Factors on Crop Uptake of Toxic Trace Elements)

  • 박미정;지원현;고일하;이상환
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권5호
    • /
    • pp.37-44
    • /
    • 2018
  • Soil trace elements and their bioaccumulation in agricultural products have attracted widespread concerns, yet the crop uptake characteristics of trace elements in different soil-plants systems have been rarely investigated. Experiments were carried out to investigate the effect of soil properties on trace element concentrations in cabbage and radish. Soil pH and total organic matter were major factors influencing trace elements transfer from soil to vegetables. Inclusion of other soil properties in the stepwise regression analysis improved the regression models for predicting trace element concentrations. Consideration of other soil properties should be taken into account for more precise prediction of trace element concentrations in the two vegetables, which could help quantitatively evaluate the ecologic risk of toxic trace elements accumulation in crops.

토양 중 mineral에 의한 염소계 유기화합물 분해 특성 연구

  • 최정윤;심상규;이우진
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.33-36
    • /
    • 2006
  • The reductive dechlorination of chlorinated organic compounds by soil minerals in soil and groundwater were carried out in this study. FeS, green rust, and magnetite were chosen as the representative soil minerals which were capable of degrading chlorinated compound in soil system. FeS was the most effective reductant in degradation of carbon tetrachloride. The reductive degradation of CT and 1,1,1-TCA by FeS was much faster than that of 1,2-DCB and 2,4-DCP. The reactivity of FeS was effectively improved by the addition of trace metals. The addition of Co to FeS suspension enhanced the reaction rate of 1,2-DCB by a factor of 46 compared to that by FeS without Co.

  • PDF

토양처리용 천연물제초제 개발을 위한 생물검정법 개선 (Improved Soil Application Bioassay for Efficient Development of Natural Pre-emergence Herbicides)

  • 김재덕;황현진;서보람;최정섭;김진석
    • 한국잡초학회지
    • /
    • 제31권3호
    • /
    • pp.229-239
    • /
    • 2011
  • 본 연구는 토양처리용 천연물 제초제의 개발을 보다 신속하게 효율적으로 진행하기 위한 방안으로서 실용적인 입장에서 보다 개선된 검정법을 확립하기 위해 수행되었다. 검정하고자 하는 화합물의 량이 50mg 이상 충분할 경우, 잡초 4초종(피, 바랭이, 자귀풀, 어저귀)이 파종된 $50cm^2$ 토양 표면적을 가진 폿트에서 온실검정을 함으로서 기존의 방법(토양 표면적이 $350cm^2$인 폿트 이용)에 비해 약제 소요량을 7배 줄일 수 있었다. 이때 검정초기 처리농도는 $10,000{\mu}g\;mL^{-1}$ 내외로 하는 것이 적당하였다. 한편 검정용 시료의 량이 10mg 이하로서 미량일 경우는 6 well plate를 이용하되 각 well에 밭토양을 담고 4가지 초종을 파종한 다음 실내에서 제초활성을 검정하는 방법이 추천될 수 있었다. 이는 기존의 방법(토양 표면적이 $350cm^2$인 폿트 이용)에 비해 약제 소요량 및 처리용액 부피를 14배 가까이 줄일 수 있었고 실제에 가까운 데이터를 확보할 수 있어 보다 빠른 속도로 천연물 제초제를 개발하는데 도움이 될 것으로 판단되었다.

Behavior of polymer columns in soft clayey soil: A preliminary study

  • Arasan, Seracettin;Akbulut, Rahim Kagan;Isik, Fatih;Bagherinia, Majid;Zaimoglu, Ahmet Sahin
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.95-107
    • /
    • 2016
  • Deep soil mixing with cement and cement-lime mixtures has been widely used for decades to improve the strength of soils. In this study, small-scale laboratory model tests of polymer columns in soft clayey soil were conducted to evaluate the feasibility of using various polymeric compounds as binders in deep soil mixing. Floating and end bearing polymer columns were used to examine the load-settlement relationship of improved soft clayey soils for various area replacement ratios. The results indicate that polymer columns show good promise for use in deep mixing applications.