• 제목/요약/키워드: The height of wall

검색결과 896건 처리시간 0.025초

고속도로 도로부에 시공된 패널식 보강토 옹벽의 높이별 안전율과 경제성 검토 (A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel)

  • 박민철
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.54-63
    • /
    • 2018
  • 본 연구에서는 고속도로 도로부의 표준단면을 대상으로 패널식 보강토 옹벽의 높이별 안전율과 경제성에 대해 비교 검토하였다. 설계기준에 따라 하중조건은 고속도로의 단면 및 형상조건을 고려하여 콘크리트 포장의 사하중과 차량하중을 재하하고 최상단 보강재의 경우 방호벽의 충돌하중을 고려하였다. 보강재의 길이는 보강토 옹벽의 높이에 따라 0.9H로 배치하였기 때문에, 보강토체의 형상에 따라 지배되는 외적 안정성에 대해 높이의 증가에 따른 영향은 거의 없는 것으로 나타났다. 지지력에 대한 안전율은 보강토 옹벽의 높이에 따라 자중이 증가되기 때문에 급격히 감소되었다. 복합중력식 설계법에 따른 내적 안정성을 검토한 결과, 인발 안전율은 증가되고 파단 안전율은 감소되었다. 보강토 옹벽의 높이가 증가될수록 활동력으로 작용되는 수평토압과 저항력으로 작용되는 수직토압이 함께 증가되기 때문에 인발의 안전율은 증가되었다. 돌기형 강재 보강재의 장기 허용인장력은 상수이기 때문에, 높이에 따라 활동력에 대한 안전율은 수평토압이 증가되어 감소되었다. 블록식 보강토 옹벽보다는 패널식 보강토 옹벽의 경제성이 우수한 것으로 나타났고, 기존 옹벽과 비교하면 5.0 m이상의 높이에서 패널식 보강토 옹벽의 경제성이 가장 우수한 것으로 나타났다.

냉간성형강재 벽체 패널의 한계높이 산정 (Limiting Height Evaluation for Cold-Formed Steel Wall Panels)

  • 이영기;토마스 밀러
    • 한국강구조학회 논문집
    • /
    • 제15권1호
    • /
    • pp.17-24
    • /
    • 2003
  • 본 연구의 목적은 서고보드로 둘러 싸여진 냉간성형강재 벽체패널의 실험에 근거한 한계높이를 산정하는 것이다. 이 패널은 내장 비내력벽으로서 등분포하중이 측면으로 작용된다고 가정한다. 한계높이는 처짐공식 뿐만 아니라 휨, 전단, 그리고 복부판 압착을 고려한 강도에도 기초하여 산정한다. 3가지 처짐제한(L/360, L/240, L/120)에 대한 한계높이는 전형적인 설계압력 범위에 걸쳐 산정된다(여기서 L은 벽체의 높이임).

고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성 (Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments)

  • 임경훈;이봉수;김종현;구자예
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

Evaluation of Construction RCB Exterior Wall Formwork according to Placing Height on Nuclear Power Plant

  • Song, Hyo-Min;Sohn, Young-Jin;Shin, Yoonseok
    • 한국건축시공학회지
    • /
    • 제15권6호
    • /
    • pp.653-660
    • /
    • 2015
  • Technologies for reducing construction duration are key factors in nuclear power plant construction projects, as a reduction in construction duration at the construction phase leads to a reduction in construction cost and an increase in profits through the early operation of the nuclear power plant. To analyze the constructability of the height of single-layer placement of formwork for the Reactor Containment Building (RCB) exterior wall through lateral pressure according to the height of concrete placement, the deformation criteria for formwork, and a new form design, 'MIDAS GEN (hereinafter referred to as MIDAS)' is used in this study. The cost and workload of formwork are derived according to the unit of height of the RCB exterior wall. Based on the result, it was found that the higher the RCB exterior wall, the higher the material cost, and the less the construction duration and the less the total number of formwork layers. Based on this result, it is believed that the material cost and the construction duration can be appropriately determined according to the formwork height.

실내공간에서 화재 발생위치에 따른 연기거동에 대한 실험연구 (An Experimental Study of Smoke Movement of the Various Fire Location in Room)

  • 유홍선;정진용;이재하;홍기배
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.703-709
    • /
    • 2002
  • In order to investigate the smoke movement in three dimensional room fires, the center fire, wall fire and corner fire plume in different sized fires were studied experimentally by rectangular pool fire using methanol as a fuel. As the fire size became larger for the center fires placed at the center of the floor, the air flow rate entrained through the opening, average hot layer temperature, flame angle deflected backwards and mean flame height was observed to increase. On the other hand, as the fire size became smaller, the neutral plane height in the door and time reached steady-state was observed to decrease. The average hot layer temperature, mean flame height and doorway neutral plane height obtained from comer fire were higher than those produced by wall fires and center fires. The simple model for describing the effect of walls on the mean flame height was presented. It was shown that the model provides a good description of the present measurements, when used with the assumption by Hansell(1993), that the increase of the average flame height is equal to the ratio of the open to the total perimeters of the trays. Also the two models for predicting the effects of walls on the mean flame height were presented. These models overestimated the measured values of the mean flame height above fuel trays close to a wall and in a corner by approximately 19-26%, respectively.

Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

  • Park, Sang Kil;Dodaran, Asgar Ahadpour;Han, Chong Soo;Shahmirzadi, Mohammad Ebrahim Meshkati
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.947-964
    • /
    • 2014
  • Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls (${\gamma}_v=1$). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

옹벽 상단 교통하중의 분포에 따른 옹벽의 수평 토압 분석 (Analysis of Lateral Earth Pressures on Retaining Wall from Traffic Load Distribution)

  • 이기철;김동욱;정문경
    • 한국지반신소재학회논문집
    • /
    • 제16권4호
    • /
    • pp.43-55
    • /
    • 2017
  • 본 연구에서는 교통시설 하부구조인 옹벽(중력식 옹벽)에 가해지는 수평토압의 크기에 교통하중이 미치는 영향을 파악하였다. 교통시설 하부구조인 옹벽에서 상부 교통하중이 옹벽 안전성에 미치는 영향에 관한 연구가 부족한 실정이다. 교통하중으로 인해 옹벽에 유발되는 수평토압은 도로의 차선 수, 차량 하중의 크기 및 옹벽으로부터 떨어진 거리 등의 영향을 받을 것이다. 따라서 이들 변수를 대상으로 수치해석한 결과, 차량하중 이격거리가 옹벽 높이보다 클 경우 수평토압의 변화는 미미하였다. 따라서 상부에 교통하중을 받는 도로옹벽 설계 시 옹벽내측으로부터 교통하중까지의 이격거리가 옹벽의 높이 내의 교통하중만을 고려하는 것이 실용적이고 합리적이다.

Analytical simulation of reversed cyclic lateral behaviors of an RC shear wall sub-assemblage

  • Lee, Han Seon;Jeong, Da Hun;Hwang, Kyung Ran
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.173-196
    • /
    • 2012
  • Experimental results of cyclic reversed lateral force test on a two-story reinforced concrete shear wall sub-assemblage are simulated analytically by using the PERFORM-3D program. A comparison of experimental and analytical results leads to the following conclusions: (1) "Shear Wall" and "General Wall" models with "Concrete shear" cannot simulate the pinching phenomena due to shear and show larger amounts of inelastic energy absorption than those in the experiment. (2) Modeling a story-height wall by using two or more "General Wall" elements with "Diagonal shear" in the vertical direction induces the phenomenon of swelling-out at the belly, leading to the erroneous simulation of shear behaviors. In application to tall building structures, it is recommended to use one element of "General Wall" with "Diagonal shear" for the full height of a story. (3) In the plastic hinge area, concrete deformations of analytical models overestimate elongation and underestimate shortening when compared with experimental results.

고대 로마의 실내 장식벽화가 과학적인 원근법에 미친 영향 연구 (A Study on Effects of Decorative Interior Wall Paintings of the antique Rome on the Scientific Perspective)

  • 홍재동
    • 건축역사연구
    • /
    • 제11권3호
    • /
    • pp.69-86
    • /
    • 2002
  • Under the assumption that techniques of interior decoration often frequently used by people of the antique Greece and Rome became basis for scientific perspective in the period of Renaissance, this study analyzed characteristics of wall paintings excavated as relics of the antique Greece and Rome. The result of the study can be summarized as follows ; (1) Decorative wall paintings which were and have been excavated from relics of the antique Roman cities are characterized by single and multiple point techniques as their perspective. The two techniques were later adapted by people of the Baroque in the 16th century who recognized and expressed space through putting it into a certain framework. (2) Such antique wall paintings drawn using the technique of single point clearly indicate that the technique was not fully created in the period of Renaissance but developed by people of the antique Greece and Rome. Unlike its present form, the technique was unsophisticated and poor in many respects when first created. Since then, it has become manipulated as spatial recognition has been developed in various ways. (3) Illustrations on vase surfaces or wall-decorative painting panels of the antique Greece were painted mainly through the technique of multiple points which helped changes in the sense of space. The technique were later complied with by the theory of cubism which was emerged in the late 19th century. In other words, the technique was developed over times into a basis of the theory. (4) Some of the antique Roman and Greek wall paintings were drawn by using the method of single point perspective. When the height of the wall foundation, 90cm, as specified in [Ten Books of Architecture] by Vitrubius, the viewpoint for the method almost complied with the height of spectators' view, or 150cm. This height is almost same as the height of the view point employed by wall paintings in the Renaissance period.

  • PDF

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.