• 제목/요약/키워드: The generalized Maxwell model

검색결과 32건 처리시간 0.017초

파쇄대 반사에너지의 AVO 및 복소트레이스 분석에 관한 모형연구 (A Modeling Study on the AVO and Complex Trace Analyses of the Fracture Bone Reflection)

  • 한수형;김지수;하희상;민동주
    • 지구물리와물리탐사
    • /
    • 제2권1호
    • /
    • pp.33-42
    • /
    • 1999
  • 천연가스 저류층의 부존 특성을 파악하는데 주로 이용되고 있는 AVO 및 복소분석법을 파쇄대와 같은 지반환경의 주요 불연속면에 적용하는데 그 초점을 두었다. 연구에 이용된 시험자료는 수평 파쇄구조에 대하여 일반화된 맥스웰체 근사법을 적용한 점탄성매질에서의 수치모형자료이다. 수평 파쇄구조에 대한 AVO분석에서 반사 P파의 특성은 지하매질의 음향 임피던스 차이와 기하학적 계수인 오프셋에 따라 다양하게 나타나며 구배중합 단면도 및 오프셋조절 중합단면도에서 효과적으로 해석되는데, 입사각이 커질수록 진폭이 감쇠되는 특성을 보인다. 중합자료에 대한 복소트레이스 플롯(순간진폭, 순간주파수, 순간위상)에서 파쇄대의 상$\cdot$하부 경계는 강한 진폭과 동일한 위상으로 특징 지워지며, 파쇄대 구간 및 직하부는 저주파 특성을 보인다. 파쇄대와 주위 매질의 Q-대비에 따라 다르게 나타나는 진폭감쇠와 파형분산은 역 Q-필터링으로 효과적으로 보상되었다.

  • PDF

수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究) (Mechanical and Rheological Properties of Rice Plant)

  • 허윤근;차균도
    • 농업과학연구
    • /
    • 제14권1호
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF