• Title/Summary/Keyword: The fire safety

Search Result 3,674, Processing Time 0.029 seconds

Investigation of Health Hazards in the Underground Storage Facilities of Ginger Roots (생강 저장굴에서 발생한 건강 피해의 원인 조사)

  • Bae, Geun-Ryang;Lim, Hyun-Sul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.1
    • /
    • pp.72-75
    • /
    • 2002
  • Objectives : To evaluate the health hazards in the underground storage facilities of ginger roots. Methods : The authors reviewed the emergency rescue records from the Seosan fire department over the period Jan 1, 1996 to Aug 31, 1999. The atmospheres in 3 different underground storage locations were analyzed for $O_2,\;CO_2,\;CO,\;H_2S\;and\;NH_4$. Results : From the emergency records, we were able to identify 20 individuals that had been exposed to occupational hazards in the underground storage facilities. Among these 20 cases, 13 were due to asphyxiation (resulting in f deaths) and 7 were due to falls. In the first atmospheric tests, peformed on Feb 25, 1998, the O2 level inside the underground storage facility, located about $5{\sim}6$ meters below the surface, was 20.6% and the $CO_2$ level was about 1,000 ppm. CO, $H_2S\;and\;NH_4$ were not detected. In the second tests on Jul 6, 1999, measurements of the $O_2$ level at 3 meters below the surface in two different storage locations were 15.3 and 15.1%. And the $O_2$ levels inside the storage facilities were 12.2 and 12.1%. The $CO_2$ level was above 5,000 ppm (beyond upper limits of measurement). CO, $H_2S\;and\;NH_4$ were not detected. Conclusions : We conclude that asphyxiation in the underground storage facilities for ginger roots was not due to the presence of toxic gases such as CO, $H_2S\;and\;NH_4$, but rather the exclusion of oxygen by carbon dioxide was responsible for causing casualties. For the development of a hazard free working environment, safety education as well as improvements in storage methods are needed.

A Simulation of the Tubular Packed Bed Reactor for the Steam-CO2 Reforming of Natural Gas (천연가스의 수증기-이산화탄소 복합개질을 위한 충진층 관형반응기의 전산모사)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2012
  • A 2-dimensional heterogeneous reactor model was developed and simulated for a tube reactor of packed bed where the steam-$CO_2$ combined reforming reaction of natural gas proceeded to produce synthesis gas. Under the reactor feeding rate, 45 $Nm^3$/h, of the reactant gas stream, the 2-dimensional heterogeneous reactor model showed the similar results to those from the ASPEN simulator although there were some discrepancies between the two in the temperature and the $H_2$/CO ratio of the reformed gas at the reactor exit. The calculated enthalpy difference between the reformed gas at the reactor exit and the reactant gas fed to the reactor was closely correspondent to the total amount of heat transferred to the reactor interior from the furnace. This supports that the 2-dimensional heterogeneous reactor model was reasonably established and the numerical solution was properly obtained.

The Effect of Functional Shoes (Coolfin) on Top of Foot and Great Toe Blood Circulation (기능성 신발 쿨핀(Coolfin) 착용이 발등 및 엄지발가락 혈액순환에 미치는 영향)

  • Kim, Yun-Jin;Lee, Dong-Ryul;Sang, Hie-Sun;Lee, Mi-Nam;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.4
    • /
    • pp.220-225
    • /
    • 2014
  • Purpose: This study aims to investigate the impact of a short walk putting on Coolfin shoes on the foot temperature rise and blood circulation. Methods: Twenty healthy adults participated in experiments in this study. All subjects walked respectively barefoot and putting on Coolfin shoes. Infrared imaging cameras were used to collect and analyze the data on the foot temperature. Results: As a result of this study, there were significant differences between the temperatures of the great toe and top of the foot after 20-minute walks with bare feet and in Coolfin shoes. Both the temperatures of the great toe and top of the foot decreased after a 20-minute walk in the barefoot condition, and there was a significant difference between them (p<0.05). Both the temperatures of the great toe and top of the foot increased after a 20-minute walk in the condition of putting on Coolfin shoes, and there was a significant difference between them(p<0.05). Conclusion: A short walk putting on Coolfin products induces the movement of the toes to increase the blood flow and accordingly, has a direct impact on the increase of the surface temperature of the feet, so they are effective products for helping blood circulation in the feet.

Simulation for the Evaluation of Reforming Parameter Values of the Natural Gas Steam Reforming Process for a Small Scale Hydrogen-Fueling Station (소규모 수소 충전소용 천연가스 수증기 개질공정의 수치모사 및 공정 변수 값의 산정)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yu-Taek;Roh, Hyun-Seog;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2007
  • Numerical simulation of the natural gas steam reforming process for on-site hydrogen production in a $H_2$ fueling station was conducted on the basis of process material and heat balances. The effects of reforming parameters on the process efficiency of hydrogen production were investigated, and set-point values of each of the parameters to minimize the sizes of unit process equipments and to secure a stable operability of the reforming process were suggested. S/C ratio of the reforming reactants was found to be a crucial parameter in the reforming process mostly governing both the hydrogen production efficiency and the stable operability of the process. The operation of the process was regarded to be stable if the feed water(WR) as a reforming reactant could evaporate completely to dry steam through HRSG. The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas(NGR) and WR as reforming reactants and natural gas(NGB) as a burner fuel were also determined for the hydrogen production rate of $27\;Nm^3/h$.

The Measurement of Lower Flash Point for tert-Pentanol+n-Decane System Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 tert-Pentanol+n-Decane 계의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.41-46
    • /
    • 2012
  • The flash point the lowest temperature at which the concentration of vapor of the substance in the air reaches the lower flammability limit(LFL), and is one of the most important physical properties used to determine the potential for fire and explosion hazards of industrial materials. The most published flash point data was for pure components and the flash points of the binary solutions that have flammable components, appear to be scarce in the literature. In the present study, the flash points of tert-pentanol+n-decane system were measured by Tag open-cup tester. The measured data were compared with the values calculated by the Raoult's law and the optimization methods based on the Wilson and NRTL equations. The calculated values by optimization methods were found to be better than those based on the Raoult's law.

AE Characteristic of Polyethylene Pipe under various defects (다양한 결함에 대한 폴리에틸렌 배관의 음향방출 특성)

  • Nam Ki Woo;Lee Si Yoon;Ahn Seok Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.1-7
    • /
    • 2004
  • The polyethylene pipe can use semi-permanent because of the high corrosion resistance with chemical stability. In addition to, there is the merit that is an easy to establish and to maintain. However, as the reason that it is simply degraded when the polyethylene pipe was exposed to the outside, mainly it is used to lay under the ground with low-pressure gas transportation pipe. In this study, the nondestructive evaluation method was used to maintain the integrity of the polyethylene pipe. We simulated the various defects on the polyethylene pipes, and then the AE signal occurred according to the impact test of steel ball was evaluated by the acoustic emission method. From the results, the waveform and dominant frequency could be distinguishing from the defect shapes of polyethylene pipe. Especially, in the case of notch defect, the AE signals occur different by the angle and depth of the notch.

  • PDF

Environment Adaptive Emergency Evacuation Route GUIDE through Digital Signage Systems

  • Lee, Dongwoo;Kim, Daehyun;Lee, Junghoon;Lee, Seungyoun;Hwang, Hyunsuk;Mariappan, Vinayagam;Lee, Minwoo;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.90-97
    • /
    • 2017
  • Nowadays, the most of commercial buildings are build-out with complex architecture and decorated with more complicated interiors of buildings so establishing intelligible escape routes becomes an important case of fire or other emergency in a limited time. The commercial buildings are already equipped with multiple exit signs and these exit signs may create confusion and leads the people into different directions under emergency. This can jeopardize the emergency situation into a chaotic state, especially in a complex layout buildings. There are many research focused on implementing different approached to improve the exit sign system with better visual navigating effects, such as the use of laser beams, the combination of audio and video cues, etc. However the digital signage system based emergency exit sign management is one of the best solution to guide people under emergency situations to escape. This research paper, propose an intelligent evacuation route GUIDE that uses the combination centralized Wireless Sensor Networks (WSN) and digital signage for people safety and avoids dangers from emergency conditions. This proposed system applies WSN to detect the environment condition in the building and uses an evacuation algorithm to estimate the safe route to escape using the sensor information and then activates the signage system to display the safe evacuation route instruction GUIDE according to the location the signage system is installed. This paper presented the prototype of the proposed signage system and execution time to find the route with future research directions. The proposed system provides a natural intelligent evacuation route interface for self or remote operation in facility management to efficiently GUIDE people to the safe exit under emergency conditions.

The Effect of Preventing Lateral Deformation of the Clamp Type Steel Damper in Rocking Behavior (록킹 거동을 하는 꺽쇠형 강재 댐퍼의 횡변형 방지 효과)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.141-148
    • /
    • 2021
  • In this study, the technology to prevent lateral deformation of steel dampers was reviewed and applied to the clamp type dampers. As for the experimental method, the rocking behavior was applied as in the previous study. The evaluation variables are the existing research results (SV-260) without lateral deformation prevention details and the test results (V-1, V-1R) with lateral deformation prevention details. Where, V-1 is the lateral deformation prevention detail at the lower part of the damper, and V-1R is the lateral deformation prevention detail at the lower part and upper part of the damper. As a result of evaluating the moment, drift ratio, and energy dissipation capacity relative to SV-260 at the time of maximum load, the maximum moments of V-1 and V-1R were increased by 1.22 times and 1.36 times compared to SV-260, and the maximum drift ratio increased by 2.41 times and 2.92 times. In addition, the energy dissipation capacity also increased by 1.39 times and 1.52 times, respectively. Therefore, the application of lateral deformation prevention details to the steel damper was evaluated as appropriate.

Development and Evaluation of the Korean Army's Ergonomic Flight Jacket (인간공학적 육군 비행재킷의 개발 및 평가)

  • Choi, Hee Eun;Choi, Kueng-mi
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.118-128
    • /
    • 2021
  • This study used a preliminary survey to help develop an ergonomic flight jacket that is suitable for the working environment and mission performance. The results are as follows. The ergonomic sleeve pattern was designed with a forward 165° incline that considers a shoulder joint direction suitable for the motion; in addition, a closely design opening provided warmth and safety from fire. As a result of the dimensional suitability, pilots evaluated that sleeve length and total length of the developed flight jacket were a little long (p<.01), while flight engineers and crew evaluated that those of the developed flight jacket were appropriate (p<.01). Pilots evaluated that chest circumference and waist circumference were large (p<.05), while flight engineers and crews evaluated that those of the developed flight jacket were appropriate. The evaluation of the motion suitability indicated that pilots, flight engineers and crew found the developed flight jacket more comfortable than the current flight jacket (p<.05, p<.01, p<.001). The evaluation of the usability of pockets and penholders indicated that pilots, flight engineers and crew found the developed jacket easier to use (p<.01). The flight engineers and crew evaluated that the appearance of the developed flight jacket was better than the current flight jacket (p<.05). The results of this study show that the difference of environment and mission performance has a significant influence on evaluation; therefore, it is necessary to develop separate military uniforms that included a winter flight jacket to reflect the needs of each group.

An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP (GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가)

  • Ryu, Jae-Ho;Park, Se-Ho;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.125-135
    • /
    • 2011
  • To obtain a lower story height with a long span and better fire resistance, a new composite floor system using GFRP (glass-fiber-reinforced plastics) was proposed. This floor system consists of asymmetric steel with a web opening, a hollow core ball, concrete, and GFRP. To evaluate the flexural performance of the new composite floor system, an experiment was conducted. The test parameters were the presence of GFRP, the void ratio in relation to the hollow core balls, and the web opening. The test results showed that the resistance and stiffness of the specimen with GFRP were 10% higher than those of the reference specimen, and that fully composite action was accomplished up to the yielding point. After the attainment of the yield strength, the ductility of the specimen was reduced due to the stress concentration around the web openings. The slip between the concrete and steel beam, however, was small. Thus, in the design of the proposed new floor systems, it is desirable that the calculated resistance be reduced by 15%, for safety.