• Title/Summary/Keyword: The dredged soil

Search Result 331, Processing Time 0.026 seconds

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.

Characteristics of the Segregation Sedimentation for Dredged Soil Depending on Fines Content (세립분 함량에 따른 준설토의 분리 퇴적 특성)

  • Park, Minchul;Lee, Jongkyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • Dredged and reclaimed ground in progress at the West Coast has a high content of coarse particles. There will be different behaviors depending on the location of outlet and engineering properties of soil when its ground is dredged by a pump. Therefore, the experiments were conducted that were manufactured about the chamber equipment of length 2,650mm, width 770mm, height 735mm, experimented step filling method and water content about 300%, 500% and 700% respectively with SM and ML samples in order to realize segregating sediment characteristics of dredged ground with changing much fine. With results of analysis, ML sample by higher initial water content was reached to the period of complete sedimentation and coefficient of sedimentation consolidation increased with increases of diffusion distance. SM samples showed behavior of coarse soil with diffusion distance 120cm, diffusion distance of more than 120cm showed a similar tendency with ML sample under the influence of fines. In ML sample, it could be also found that lower depth and the more increasing diffusion distance increase in percentage of sieve #200 but water content decreases. In SM sample, it could be also found that coarse soil was piled at near the diffusion distance zone but fine soil was piled at the far diffusion distance zone and prominent difference showed between percentage of sieve #200 and water content(%) by boundary point 120cm~160cm of both samples. Also, shear strength was expressed ML-maximum 2.97kPa, SM-maximum 10.2kPa with diffusion distance.

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Self-weight Consolidation (방사방향 자중압밀을 고려한 초연약 지반의 비선형 유한변형 압밀거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.495-508
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials. The installation of vertical drain provides a radial drainage path to water in the deposit soil in addition to the vertical direction. An estimation of time rate of settlement is considerably complicated when vertical drains are installed to enhance consolidation process of dredged material because the vertical drains are commonly installed before self-weight consolidation is ceased. In this paper, the vertical drain theory developed by Barron(1948) is applied to analyze the non-linear consolidation behavior considering radial drainage. The overall average degree of self-weight consolidation of the dredged soil under the condition that the water is drained in both radial and vertical directions is estimated using the Carillo(1942) formula. In addition, the Morris(2002) theory and the one-dimensional non-linear finite strain numerical model, PSDDF, are applied to analyze the self-weight consolidation in case of only the vertical drainage is considered. The new analysis approach proposed herein can simulate properly the time rate of the self-weight consolidation of dredged materials that is facilitated with vertical drains.

  • PDF

Effect of Hydrochloric Acid Concentration on Removal Efficiency and Chemical Forms of Heavy Metals During Dredged Sediment Acid Washing (준설토 산세척 시 염산 농도가 중금속의 정화효율 및 존재형태에 미치는 영향)

  • Kim, Kibeum;Choi, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • In this study, the effect of hydrochloric acid (HCl) concentrations on removal efficiency and chemical forms of heavy metals in dredged sediment during acid washing was investigated. The removal efficiencies of Zn, Cu, Pb, Ni and Cd by acid washing were 18.4-92.4%, 7.2-83.7%, 9.4-75%, 8.1-53.4% and 34.4-70.8%, respectively. Overall, the removal efficiencies of heavy metals were remarkably enhanced with the increase of the acid strength. However, the removal efficiencies for 0.5 and 1.0 M HCl were comparable, and both cases met the Korean soil contamination standard. Based on the sequential extraction results, concentration of the exchangeable fraction (F1), the most labile fraction, increased whereas concentrations of the other fractions decreased with increasing acid strength. Particularly, the carbonate (F2) and Fe/Mn oxides (F3) fractions drastically decreased by using 0.5 M or 1.0 M HCl. The current study results verified that acid washing could effectively reduce heavy metal concentrations and its potential mobility in dredged sediments. However, the study also found that acid washing may cause significant increase in bioavailable fraction of heavy metals, suggesting the need to evaluate the changes in chemical forms of heavy metals by acid washing when determining the acid strength to be applied.

Estimation of Consolidation Period for Dredged Soil by Mikasa Theory (Mikasa 압밀이론에 의한 준설토지반의 압밀기간 산정에 관한 연구)

  • 주재우;정규향;조진구
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.299-306
    • /
    • 2003
  • Dredged soil experiences large settlement during consolidation because of its high water contents. Large settlement alters the thickness of the consolidation layer greatly with time. However, the consolidation theory proposed by Terzaghi assumes the thickness of the consolidation layer to stay constant. Mikasa has developed a more rational theory considering the change of thickness of consolidation layer but it is not well applied at the site. In this study consolidation tests have been performed using Rowe cell for the four dredged clay samples with a water content of 100%, 120%, 133% and 150%. From the test results compression index characteristics and coefficient of consolidation characteristics have been investigated. Coefficients of consolidation obtained by Terzaghi's and Mikasa's theories, have been evaluated and compared with each other. When Mikasa theory is applied in the field design, the period to reach the required degree of consolidation has been reduced compared with the result by Terzaghi theory because the time factor $T_{v}$ by Mikasa theory decreases with increasing of final strain of consolidation layer, Calculation method consolidation time by Mikasa theory was concisely explained for its practical use.e.

A Study on the Shape and Cone Resistance of Dredged Fill in Geotextile Tube under Water and Drained Conditions (준설토의 퇴적형상과 수침조건에 따른 토목섬유 튜브 내 준설토의 콘 저항치에 관한 연구)

  • Kim, Hyeong Joo;Won, Myoung Soo;Lee, Jang Baek;Kim, Young Shin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.85-96
    • /
    • 2016
  • A series of tests were conducted to examine the filled tube shape with respect to the filling module type used and to investigate cone resistance properties of a dredged-soil-filled geotextile tube under water and drained conditions. Results based on the filling observation showed that the distribution of the accumulated fills inside the acrylic cell and vinyl tubes differs with respect to the type of filling modules. A crater formation around the inlet area was found during the test using I-type filling module and a horizontal sediment distribution was found during the test using inverse T-Type filling module. The dredged fill material was obtained from the Saemangeum area. The geotextile tube deformation of each filling stage was almost converged when the tube was fully drained. The cone resistance of the dredged fill in the geotextile tube under drained condition is large and is approximately 2~6 times that of the tube under water condition.

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

A Study on the Shallow Improvement Method for Dredged Clay Fills by the Model Tests (모형시험에 의한 준설점토지반의 표층안정기법 연구)

  • 김석열;노종구;이영철;권수영;김승욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.569-576
    • /
    • 2002
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, to compare the soil and sand-mat mixed method with sand-air jet method for shallow improvement of hydraulic fills at southern seashore, the model tests were performed. Through the model test results, the behavior of surface as disturbance of desiccation crust is analyzed.

  • PDF

Characterization of the mixed soil with waste and application to geotechnical field (폐기물을 포함한 혼합토의 특성 및 지반공학분야에의 응용)

  • 이기호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.72-84
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, we investigate the shear characteristics of dredged sluge mixed with oyster shells. the apparent modulus of elasticity of the this mixture are obtained from the triaxial compression tests and is utilized to characterize the apparent modulus of elastic of the oyster shells by carrying out some numerical analysis based upon the homogenization theory. We got the conclusion by a series of experiment, 1) It is verified that modulus of elasticity of dredged clay is improved by mixing with oyster shells. 2) The homogenization method for deducing apparent modulus of elasticity of oyster shells, which can consider micro-structure of mixed soil, is introduced. The elastic modulus is affected from the skeleton structure of oyster shell. The effect of 49kPa is bigger than that of 98kPa.

  • PDF

An Experimental Study on the Effect of Consolidation Improvement Using Horizontal Drains (수평배수재를 이용한 압밀개량효과에 대한 실험연구)

  • 김지용;김정기;장연수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.33-40
    • /
    • 2000
  • The horizontal drain method is one of the soil improvement methods in reclamation works using dredged soils. In this method, plastic drain boards are installed horizontally in the ground, and a seepage pressure or negative pressure is applied through one end of these drains. In this study, a basic consolidation test using horizontal drains was conducted to investigate the effectiveness of this method. The configuration of soil box which was used in this test is 100cm(B)${\times}$100cm(L)${\times}$85cm(H). The drain board was reduced to 25mm${\times}$5mm. The variations in settlement and volume of drain water during the consolidation process were measured, and the distribution of water content and the transpormation of horizontal drain were investigated.

  • PDF