• Title/Summary/Keyword: The degree of crystallinity

Search Result 221, Processing Time 0.03 seconds

The Difference of the Degree of Crystallinity of Foamed Plastics Depending on the Pressure Gradient in Mold Cavity (금형 cavity 내의 압력 차이에 의한 발포사출품의 결정화도 차이)

  • 이동욱;차성운;현창훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1354-1357
    • /
    • 2003
  • Mold Analysis is crucial factors in the design of injection molding process. Since the qualify of products depends on filing, shrinkage and etc, the procedure of prediction through analysis in the design of injection molding process is needed. In many cases, this kind of analysis makes it possible to predict pressure pattern which determines the condition of injection molding process. Crystallinity is the factor that determines the shrinkage of products. The studies showed the factors that had been related to the degree of crystallinity, which were mostly Weight Reduction, mold temperature and melt temperature. Therefore, the objective of this study is to see the differences of the degree of crystallinity depending on the positions of foamed plastics. The procedure of this study is as the following. First, Simulate the pressure gradient in mold cavity that can produces specimen by using Moldflow. Secondly, produce specimen and measure the degree or crystallinity of each part of specimen by using XRD. Lastly, identify the sensitivity of conventional plastic and foamed plastic on pressure gradient by comparing the simulation and the results of measurement.

  • PDF

Solid Phase Crystallizations of Sputtered and Chemical Vapor Deposited Amorphous Hydrogenated Silicon (a-Si:H) Thin Film (스퍼터링 및 화학기상 증착 비정질 수소화 실리콘박막의 고상결정화)

  • 김형택
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.255-260
    • /
    • 1998
  • Behavior of solid phase crystallizations (SPC) of RF sputtered and LPCVD amorphous hydrogenated silicon film were investigated. LPCVD films showed the higher degree of crystallinity and larger grain size than sputtered films. The applicable degree of crystallinity was also obtained from sputtered films. The deposition method of amorphous silicon film influenced the behavior of post annealing SPC. Observed degree of crystallinity of sputtered films strongly depended on the partial pressure of hydrogen in deposition. The higher deposition temperature of sputtering provided the better crystallinity after SPC. Due to the high degree of poly-crystallinity, the retardation of larger grain growth was observed on sputtering film.

  • PDF

Effects of nucleating agents and plasticizers on the crystallinity and crystal structure of PLA(PolyLactic Acid) (핵제 및 가소제 첨가에 따른 PLA(PolyLactic Acid)의 결정화도 개선 및 결정구조에 관한 연구)

  • Park, Eun-Jo;Park, Hern-Jin;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.914-920
    • /
    • 2015
  • In this paper, the crystal structure and the crystallinity of PLA(PolyLactic Acid) were studied. PLA is a eco-friendly thermoplastic which completely decomposed by microorganisms, but has low thermal stability and low degree of crystallinity. The low crystallization rate makes the cycle time of injection molding longer and the degree of crystallinity lower. It is a very big disadvantage comparing the other thermoplastics. We improved the degree of crystallinity and the crystallization rate by introducing nucleating agents and plasticizer, and discussed the mechanism.

Variation of Crystalline State in a Stem of Chamaecyparis obtusa E. (편백(Chamaecyparis obtusa E.) 수간내에서의 결정상태의 변이성)

  • Kim, Nam-Hun;Lee, Ki-Yeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.20-25
    • /
    • 1998
  • Radial variation of crystalline state in a stem of Chamaecyparis obtusa E. was examined by x-ray diffraction analyses. Relative crystallinity and degree of crystallite orientation showed significant differences between juvenile and adult wood. That is, Relative crystallinity increased with increasing the age from pith to about 20th annual ring, after which it reached a more or less constant value. On the other hand, degree of crystallite orientation decreased outward from pith to about 10 years and presented almost a constant value thereafter. Crystal width by Scherrer's equation did not show any significant differences between juvenile and adult wood. Therefore, it was considered that crystallinity index and degree of crystallite orientation by x-ray diffraction method could be used for evaluating wood quality.

  • PDF

A Study on the Change of fine Structure of Hemp Cellulose (안동포원료 Hemp Cellulose의 미세구조에 관한 연구)

  • Lee UK Ja;Ryu Duck Whan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 1984
  • This study was investigation of the change of fine structure of hemp cellulose at different growing stages. The samples collected about every eight day were divided into seven groups based on plants height, then they were numbered from 1 to 7 in the order of their height. For this, the degree of crystallinity, orientation and crystallite size were measured by wide angle X-ray diffraction method. The results of this experiment were summerized as follows ; 1) The degree of crystallinity was increased by growth of hemp celtilose to be maximum in sample 5$\~$6. At this stage, the stability of crystals was showed in good states. In addition to, crystallinity index by Segal, Turley and area method showed same tendency as Ruland's. 2) The change of orientation was gradually increased by growth of hemp cellulose. This result was correlated with the degree of crystallinity. Therefore, the change of orientation depend on the degree of crystallinity. 3) On the other hand, the crystallite size was decreased by growth of hemp cellulose. But, increased after sample 4. By the way, crystallite size was interrelated with growth rate.

  • PDF

Characterization of Solid Phase Crystallization in Sputtered and LFCVD Amorphous Silicon Thin Film (스퍼터링 및 저압화학기상증착 비정질 실리곤 박막의 고상 결정화 특성)

  • 김형택
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.89-93
    • /
    • 1995
  • Effects of hydrogenation in amorphous silicon rile growths on Solid Phase Crystallization (SPC) was investigated using x-ray diffractometry, energy dispersive Spectroscopy, and Raman spectrum. Interdiffusion of barium(Ba) and aluminum(Al) compounds of corning substrate was observed in both of rf sputtering and LFCVD films under the low temperature(580$^{\circ}C$) annealing. Low degree of crystallinity resulted from the interdiffusion was obtained. Highly applicable degree of crystallinity was obtained through the mechanical damage induced surface activation on amorphous silicon films. X-ray diffraction intensity of (111) orientation was used to characterize the degree of crystallinity of SPC. Nucleation and growth rate in SPC could be controllable through the employed surface treatment. IIydrogenated LPCVD films showed the superior crystallinity to non-hydrogenated sputtering films. Insignificant effects of activation treatment in sputtered film was of activation treatment in sputtered film was observed on SPC.

  • PDF

Thermal Properties and Crystallization Behaviors of Poly(ethylene terephthalate) at Various Annealing Conditions (열처리 조건에 따른 폴리(에틸렌 테레프탈레이트)의 열적 특성 및 결정화 거동)

  • 류민영;배유리
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • The thermal properties and crystallization behaviors of poly(ethylene terephthalate) (PET) were investigated by controlling the annealing conditions of PET sample, such as relative humidity, temperature, and time. The variations of moisture content, glass transition temperature ($T_g$) and cold crystallization temperature ($T_{\propto}$) were examined after annealing the PET sample. Subsequently crystallization process was performed with the annealed PET specimen, and then the degree of crystallinity and heat distortion temperature (HDT) of variously crystallized PET specimen were examined. Residual stress relaxation in the injection molded PET sample after annealing was also observed through polarized films. Moisture content in the PET specimen increased up to 6000 ppm with increasing the relative humidity, temperature, and time of annealing. $T_g$ and $T_{\propto}$ of the annealed PET specimen decreased with increasing moisture content. The degree of crystallinity increased as increasing moisture content in the PET specimen. However for same moisture content, the degree of crystallinity varied with annealing conditions. The relaxations of residual stress in the PET sample differed from annealing conditions, and the maximum degree of crystallinity increased with decreasing residual stress in the PET sample.

A Study on Processing-Structure-Property Relationships of Extruded Carbon Nanomaterial-Polypropylene Composite Films (탄소나노튜브 및 그래핀 나노플레이트 폴리프로필렌 복합재 필름 압출 및 물성 평가)

  • Kim, Byeong-Joo;Deka, Biplab K.;Kang, Gu-Hyuk;Hwang, Sang-Ha;Park, Young-Bin;Jeong, In-Chan;Choi, Dong-Hyuk;Son, Dong-Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.254-258
    • /
    • 2013
  • Polypropylene films reinforced with multi-walled carbon nanotubes and exfoliated graphite nanoplatelets were fabricated by extrusion, and the effects of filler type and take-up speed on the mechanical properties and microstructure of composite films were investigated. Differential scanning calorimetry revealed that the addition of carbon nanomaterials resulted in increased degree of crystallinity. However, increasing the take-up speed reduced the degree of crystallinity, which indicates that tension-induced orientations of polymer chains and carbon nanomaterials and the loss of degree of crystallinity due to rapid cooling at high take-up speeds act as competing mechanisms. These observations were in good agreement with tensile properties, which are governed by the degree of crystallinity, where the C-grade exfoliated graphite nanoplatelet with a surface area of $750m^2/g$ showed the greatest reinforcing effect among all types of carbon nanomaterials used. Scanning electron microscopy was employed to observe the carbon nanomaterial dispersion and orientation, respectively.

Effect of Low-temperature Thermal Treatment on Degree of Crystallinity of a Low Density Polyethylene: $^{1}H$ Nuclear Magnetic Resonance Study (저밀도 폴리에틸렌의 결정화도에 대한 저온 열처리 효과: 수소 핵자기공명 연구)

  • Lee, Chang-Hoon;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.259-263
    • /
    • 2008
  • An effect of low-temperature long-term thermal degradation on a degree of crystallinity of a low density polyethylene (LDPE) was investigated by using $^1H$ solid state nuclear magnetic resonance (SSNMR). Firstly, the long-term thermal treatment makes a color of LDPE from white to pale yellow which is indicative of thermal oxidation. Secondly, it makes the $^{1}H$ NMR spin-spin and spin-lattice relaxation times ($T_1$) to be long. Lastly, the degree of crystallinity of the semicrystalline aged-LDPE also decreases with thermal treatment. Above all, the $T_1$ increase is envisaged to be due to either a decrease of the amorphous regions governing overall spin-lattice relaxation mechanism in LDPEs or a dynamically restricted motion of specific molecular motions by intermolecular hydrogen bonding or crosslinking. However, since the decrease of crystallinity implies an increase of amorphous regions by the thermal treatment, the former case is contrast to our results. Accordingly, we concluded that the latter effect is responsible for the $T_1$ increase.

Factors Affecting Gelatinization Temperature of Rice Starch (쌀 전분의 호화온도에 영향을 주는 요인들)

  • 이영은;오스만엘리자베쓰엠
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 1991
  • Factors affecting gelatinization temperature of rice starches from different varieties were investigated. Birefringence end-point temperature(BEPT), amylose content, granule size distribution and degree of crystallinity of rice starches showed the significant varietal differences at ${\alpha}\;=0.01$. Susceptibility of the granule to gelatininzation was dependent mainly on the degree of crystallinity, as indicated by the significant positive correlation between BEPT and the relative crystallinity(r=0.67, p<0.01). However, granule size distribution did not affect the GT(gelatinization temperature) range, nor did amylose electron microscopy (SEM). SEM also confirmed that there is no relationship between the size and the shape and the amylose content of the rice starch.

  • PDF