• Title/Summary/Keyword: The Wave Environment

Search Result 1,508, Processing Time 0.03 seconds

Wave Deformation by Large Cylindrical Structures (근접설치된 대형구조물에 의한 구조물주변의 파의 변형)

  • 김창제;김정렬
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.2
    • /
    • pp.61-67
    • /
    • 1995
  • This study examines experimentally and theoretically, the wave deformation by two large cylindrical structure in relation to the case of one structure. The wave height around the structures varies, according to the changes of the incident wave angles, the number of the structure, and the distances between the two structures. The wave deformation around the large cylindrical structures is shown to be well predicted theoretically by the diffraction theory based on the singular point distribution method using a vertical line wave source Green's function.

  • PDF

Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment

  • Dong, K.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.395-410
    • /
    • 2006
  • This paper reports the result of an investigation into wave propagation in orthotropic laminated piezoelectric cylindrical shells in hydrothermal environment. A dynamic model of laminated piezoelectric cylindrical shell is derived based on Cooper-Naghdi shell theory considering the effects of transverse shear and rotary inertia. The wave characteristics curves are obtained by solving an eigenvalue problem. The effects of layer numbers, thickness of piezoelectric layers, thermal loads and humid loads on the wave characteristics curves are discussed through numerical results. The solving method presented in the paper is validated by the solution of a classical elastic shell non-containing the effects of transverse shear and rotary inertia. The new features of the wave propagation in laminated piezoelectric cylindrical shells with various laminated material, layer numbers and thickness in hydrothermal environment and some meaningful and interesting results in this paper are helpful for the application and the design of the ultrasonic inspection techniques and structural health monitoring.

Optimal Wave Source Position Determination Based on Wave Propagation Simulation (전자파 영향 평가를 통한 최적의 전파 기지국 위치 결정 방법)

  • 박성헌;박지헌
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.41-54
    • /
    • 2001
  • In this paper, we proposed a method to determine optimal wave source for mobile telephone communication. The approach is based on wave propagation simulation. Given a wave source we can determine wave propagation effects on every surfaces of wave simulation environment. The effect is evaluated as a cost function while the source’s position x, y, z work as variables for a parameter optimization. Wave propagated 3 dimensional space generates reflected waves whenever it hits boundary surface, it receives multiple waves which are reflected from various boundary surfacers in space. Three algorithms being implemented in this paper are based on a raytracing theory. If we get 3 dimensional geometry input as well as wave sources, we can compute wave propagation effects all over the boundary surfaces. In this paper, we present a new approach to compute wave propagation. First approach is tracing wave from a source. Source is modeled as a sphere casting vectors into various directions. This approach has limit in computing necessary wave propagation effects on all terrain surfaces. The second approach proposed is tracing wave backwards : tracing from a wave receiver to a wave source. For this approach we need to allocate a wave receiver on every terrain surfaces modeled, which requires enormous amount of computing time. But the second approach is useful for indoor wave propagation simulation. The last approach proposed in this paper is tracing sound by geometric computation. We allow direct, 1-relfe tion, and 2-reflection propagation. This approach allow us to save in computation time while achieving reasonable results. but due to the reflection limitaion, this approach works best in outdoor environment.

  • PDF

Analysis on Interaction of Regular Waves and a Circular Column Structure (전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.

Observation of Long and Short Wave Radiation During Summer Season in Daegu Area (대구지역의 하절기 장.단파복사 관측)

  • Oh, Ho-Yeop;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.134-139
    • /
    • 2012
  • This study observed downward long and short-wave radiant environment with selecting 4 areas which have different height in downtown and 1 suburban area to figure out the characteristic of radiant environment in each altitude. The purpose of this study is to collect the preliminary data for interpreting urban thermal environment in summer season by analyzing thermal characteristic of atmosphere in the upper of downtown. The results of this study are as follows. 1) The higher altitude has the lower temperature, and temperature difference was more huge in day time than night time. 2) The short wave radiation according to altitude was higher as altitude was high. 3) Generally, the higher altitude has the lower air temperature, and also the higher altitude has the lower downward long wave radiation by the atmospheric radiation. 4) The ratio short wave radiation of long wave radiation was lower as altitude was high. And the urbanization effect was higher as the ratio was low.

  • PDF

Evaluation of Shipboard Working Environment based on Air Pollution and Electromagnetic Wave in ships (선박내의 공기오염도 및 전자파에 기초한 선상근무 환경의 평가)

  • 조효제;도근영;김동일;고창두;김상현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.81-87
    • /
    • 2002
  • The shipboard working environment of coastal ship is very inferior too the ground working environment and it causes the avoidance of shipboard working and the aging of crew. Especially the air pollution and electromagnetic wave in ships causes an occupational disease. hence to reduce the shipboard working fatigue is necessary by the security of the comfortable shipboard working environment and residence environment. in this paper, first we evaluate the shipboard working environment by using the measurement results of the shipboard air polluting and electromagnetic wave in the sea. And we propose the reduction measures of shipboard working fatigue based on the evaluation results of the shipboard working environment.

  • PDF

A Study on the Characteristics of Large Amplitude Ocean Waves (대진폭 해양파의 특성에 대한 연구)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • In this paper time series wave data which contain a freak wave is investigated. Various wave characteristics are compared between wave data with a freak wave and without. Among 24 hour wave data measured in the Yura Sea, two adjacent 30 min wave data with and without a freak wave are examined intensively. It is seen that the highest waves do not have the longest wave period. The wave period of the longest period waves is a little longer than the average wave period and much shorter than the significant wave period. Although the sea state is quite high, the Rayleigh distribution fits well to the probability of wave height. The characteristics of the wave spectra do not change much, but the nonlinearity increases for the wave data with a freak wave. The significant wave height without a freak wave is larger than that with a freak wave. Hence, the higher significant wave height does not always increase the probability of the occurrence of the freak waves.

  • PDF

Applicability of Boussinesq Models for Wave Deformation and Wave-Induced Current (파랑변형 및 해빈류에 대한 Boussinesq 모형의 적용성 검토)

  • Cho, Young-Jun;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.185-193
    • /
    • 2010
  • In the present study, wave deformation and wave-induced current were calculated under the regular wave conditions using the Boussinesq model. The model results of the wave deformation showed good agreements with the preceeding laboratory experiments of others. The wave-induced current of the fully developed sea state was calculated. For field application of model, the preceeding field data by others in the real scale of the water area were compared, the numerical result of wave deformation showed a relatively good agreement with the field data. Although the numerical result of wave-induced current was underestimated over the longshore bar developed area, the Boussinesq model is generally suitable to predict the wave-induced current.

Channel Equalization Schemes using Midamble for WAVE Systems (WAVE 시스템에서 미드엠블을 이용한 채널 등화 방식)

  • Hong, Dae-Ki;Kang, Bub-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2215-2222
    • /
    • 2010
  • A Wireless Access for Vehicular Environment (WAVE) system based on Orthogonal Frequency Division Multiplexing (OFDM) is made for vehicle to vehicle wireless communications. The physical layer standard of the WAVE system is very similar to that of the IEEE802.11a wireless local area network (WLAN). Therefore, the performance of the WAVE system is degraded by continual channel variation in the WAVE multipath fading channels after starting initial channel estimation. In this paper, we research the performance improvement of equalization in 64 Quadrature Amplitude Modulation (QAM) transmission in WAVE environment. The proposed algorithms use the training sequence and the midamble sequence which is used for fast channel variation such as WAVE environments. Additionally, various interpolation methods are also used for the channel tracking.

Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season (하절기 도시의 지역별 장.단파복사 특성 분석과 해석)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.