• Title/Summary/Keyword: The Simulated Annealing

Search Result 629, Processing Time 0.03 seconds

Energy-Aware Hybrid Cooperative Relaying with Asymmetric Traffic

  • Chen, Jian;Lv, Lu;Geng, Wenjin;Kuo, Yonghong
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.717-726
    • /
    • 2015
  • In this paper, we study an asymmetric two-way relaying network where two source nodes intend to exchange information with the help of multiple relay nodes. A hybrid time-division broadcast relaying scheme with joint relay selection (RS) and power allocation (PA) is proposed to realize energy-efficient transmission. Our scheme is based on the asymmetric level of the two source nodes' target signal-to-noise ratio indexes to minimize the total power consumed by the relay nodes. An optimization model with joint RS and PA is studied here to guarantee hybrid relaying transmissions. Next, with the aid of our proposed intelligent optimization algorithm, which combines a genetic algorithm and a simulated annealing algorithm, the formulated optimization model can be effectively solved. Theoretical analyses and numerical results verify that our proposed hybrid relaying scheme can substantially reduce the total power consumption of relays under a traffic asymmetric scenario; meanwhile, the proposed intelligent optimization algorithm can eventually converge to a better solution.

Structural health monitoring through meta-heuristics - comparative performance study

  • Pholdee, Nantiwat;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Damage detection and localisation in structures is essential since it can be a means for preventive maintenance of those structures under service conditions. The use of structural modal data for detecting the damage is one of the most efficient methods. This paper presents comparative performance of various state-of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The metaheuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems for structural damage detection. The meta-heuristics are then used to solve the test problems treated as optimisation problems. Comparative performance is carried out where the statistically best algorithms are identified.

Recent Development of Search Algorithm on Small Molecule Docking (소분자 도킹에서의 탐색알고리듬의 현황)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.

  • PDF

Analysis of trusses by total potential optimization method coupled with harmony search

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.183-199
    • /
    • 2013
  • Current methods of analysis of trusses depend on matrix formulations based on equilibrium equations which are in fact derived from energy principles, and compatibility conditions. Recently it has been shown that the minimum energy principle, by itself, in its pure and unmodified form, can well be exploited to analyze structures when coupled with an optimization algorithm, specifically with a meta-heuristic algorithm. The resulting technique that can be called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) has already been applied to analyses of linear and nonlinear plane trusses successfully as coupled with simulated annealing and local search algorithms. In this study the technique is applied to both 2-dimensional and 3-dimensional trusses emphasizing robustness, reliability and accuracy. The trials have shown that the technique is robust in two senses: all runs result in answers, and all answers are acceptable as to the reliability and accuracy within the prescribed limits. It has also been shown that Harmony Search presents itself as an appropriate algorithm for the purpose.

Basic Study on Spatial Optimization Model for Sustainability using Genetic Algorithm - Based on Literature Review - (유전알고리즘을 이용한 지속가능 공간최적화 모델 기초연구 - 선행연구 분석을 중심으로 -)

  • Yoon, Eun-Joo;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.133-149
    • /
    • 2017
  • As cities face increasing problems such as aging, environmental pollution and growth limits, we have been trying to incorporate sustainability into urban planning and related policies. However, it is very difficult to generate a 'sustainable spatial plans' because there are trade-offs among environmental, society, and economic values. This is a kind of non-linear problem, and has limitations to be solved by existing qualitative expert knowledge. Many researches from abroad have used the meta heuristic optimization algorithms such as Genetic Algorithms(GAs), Simulated Annealing(SA), Ant Colony Optimization(ACO) and so on to synthesize competing values in spaces. GAs is the most frequently applied theory and have been known to produce 'good-enough plans' in a reasonable time. Therefore we collected the research on 'spatial optimization model based GAs' and analyzed in terms of 'study area', 'optimization objective', 'fitness function', and 'effectiveness/efficiency'. We expect the results of this study can suggest that 'what problems the spatial optimization model can be applied to' and 'linkage possibility with existing planning methodology'.

A new method for an automated synthesis of heat exchanger networks (열교환망 자동합성을 위한 새로운 방법)

  • Lee, Gyu-Hwang;Kim, Min-Seok;Lee, In-Beom;Go, Hong-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.256-263
    • /
    • 1998
  • Among process synthesis problems, the heat exchanger network (HEN) has been subjected to the most concentrated effort because this kind of problems was well defined for solving it and 20-30% energy savings could be realized in the present chemical processes. In this paper, we use an evolutionary approach for HEN synthesis because this approach can overcome the local optimum and combine some heuristic rules. The basic evolutionary approach is composed of three parts, that is, initialization step, growth step and mutation step, as in the simulated annealing and genetic algorithm. This algorithm uses the ecological rule that a better cell will live and worse cell should decompose after repeated generations. With this basic concept, a new procedure is developed and a more efficient method is proposed to generate initial solutions. Its effectiveness is shown using test examples.

  • PDF

A Secure and Efficient Cloud Resource Allocation Scheme with Trust Evaluation Mechanism Based on Combinatorial Double Auction

  • Xia, Yunhao;Hong, Hanshu;Lin, Guofeng;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4197-4219
    • /
    • 2017
  • Cloud computing is a new service to provide dynamic, scalable virtual resource services via the Internet. Cloud market is available to multiple cloud computing resource providers and users communicate with each other and participate in market transactions. However, since cloud computing is facing with more and more security issues, how to complete the allocation process effectively and securely become a problem urgently to be solved. In this paper, we firstly analyze the cloud resource allocation problem and propose a mathematic model based on combinatorial double auction. Secondly, we introduce a trust evaluation mechanism into our model and combine genetic algorithm with simulated annealing algorithm to increase the efficiency and security of cloud service. Finally, by doing the overall simulation, we prove that our model is highly effective in the allocation of cloud resources.

Design Automation of High-Performance Operational Amplifiers (고성능 연산 증폭기의 설계 자동화)

  • Yu, Sang-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.145-154
    • /
    • 1997
  • Based on a new search strategy using circuit simulation and simulated annealing with local search, a technique for design automation of high-performance operational amplifiers is proposed. For arbitrary circuit topology and performance specifications, through discrete optimization of a cost function with discrete design variables the design of operational amplifiers is performed. A special-purpose circuit simulator and some heuristics are used to reduce the design time. Through the design of a low-power high-speed fully differential CMOS operational amplifier usable in smart sensors and 10-b 25-MS/s pipelined A/D converters, it has been demonstrated that a design tool developed using the proposed technique can be used for designing high-performance operational amplifiers with less design knowledge and less design effort.

  • PDF

PESA: Prioritized experience replay for parallel hybrid evolutionary and swarm algorithms - Application to nuclear fuel

  • Radaideh, Majdi I.;Shirvan, Koroush
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3864-3877
    • /
    • 2022
  • We propose a new approach called PESA (Prioritized replay Evolutionary and Swarm Algorithms) combining prioritized replay of reinforcement learning with hybrid evolutionary algorithms. PESA hybridizes different evolutionary and swarm algorithms such as particle swarm optimization, evolution strategies, simulated annealing, and differential evolution, with a modular approach to account for other algorithms. PESA hybridizes three algorithms by storing their solutions in a shared replay memory, then applying prioritized replay to redistribute data between the integral algorithms in frequent form based on their fitness and priority values, which significantly enhances sample diversity and algorithm exploration. Additionally, greedy replay is used implicitly to improve PESA exploitation close to the end of evolution. PESA features in balancing exploration and exploitation during search and the parallel computing result in an agnostic excellent performance over a wide range of experiments and problems presented in this work. PESA also shows very good scalability with number of processors in solving an expensive problem of optimizing nuclear fuel in nuclear power plants. PESA's competitive performance and modularity over all experiments allow it to join the family of evolutionary algorithms as a new hybrid algorithm; unleashing the power of parallel computing for expensive optimization.

A Study on Wireless LAN Topology Configuration for Enhancing Indoor Location-awareness and Network Performance (실내 위치 인식 및 네트워크 성능 향상을 고려한 무선 랜 토폴로지 구성 방안에 관한 연구)

  • Kim, Taehoon;Tak, Sungwoo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.472-482
    • /
    • 2013
  • This paper proposes a wireless LAN topology configuration method for enhancing indoor location-awareness and improving network performance simultaneously. We first develop four objective functions that yield objective goals significant to the optimal design of a wireless LAN topology in terms of location-awareness accuracy and network performance factors. Then, we develop metaheuristic algorithms such as simulated annealing, tabu search, and genetic algorithm that examine the proposed objective functions and generate a near-optimal solution for a given objective function. Finally, four objective functions and metaheuristic algorithms developed in this paper are exploited to evaluate and measure the performance of the proposed wireless LAN topology configuration method.