• Title/Summary/Keyword: The Primary and The Secondary Design

Search Result 529, Processing Time 0.032 seconds

Design Methodology for Transformers Including Integrated and Center-tapped Structures for LLC Resonant Converters

  • Jung, Jee-Hoon;Choi, Jong-Moon;Kwon, Joong-Gi
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.215-223
    • /
    • 2009
  • A design methodology for transformers including integrated and center-tapped structures for LLC resonant converters is proposed. In the LLC resonant converter, the resonant inductor in the primary side can be merged in the transformer as a leakage inductance. And, the absence of the secondary filter inductor creates low voltage stress on the secondary rectifiers and is cost-effective. A center-tapped structure of the transformer secondary side is widely used in commercial applications because of its higher efficiency and lower cost than full-bridge structures in the rectifying stages. However, this transformer structure has problems of resonance imbalance and transformer inefficiency caused by leakage inductance imbalance in the secondary side and the position of the air-gap in the transformer, respectively. In this paper, gain curves and soft-switching conditions are derived by first harmonic approximation (FHA) and operating circuit simulation. In addition, the effects of the transformer including integrated and center-tapped structures are analyzed by new FHA models and simulations to obtain an optimal design. Finally, the effects of the air-gap position are analyzed by an electromagnetic field simulator. The proposed analysis and design are verified by experimental results with a 385W LLC resonant converter.

Design of the In-pile Plug Assembly and the Primary Shutter for the Neutron Guide System at HANARO (하나로 냉중성자 유도관 시스템을 위한 인파일 플러그 및 주개폐기의 설계)

  • Shin, Jin-Won;Cho, Young-Garp;Cho, Sang-Jin;Ryu, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1585-1589
    • /
    • 2007
  • The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the mechanical design of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  • PDF

A Study on the Menu Type of Instrument Cluster IVIS

  • Kim, Hye Sun;Jung, Kwang Tae;Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.189-198
    • /
    • 2013
  • Objective: This research was carried out to study the menu type design of instrument cluster IVIS(In Vehicle Information System) for efficient navigation under deconcentrated situations. Background: A driver controls the IVIS menu using the rest of cognitive resources while driving a car. Although a driver controls the IVIS using extra cognition resources, his or her distraction can still cause some safety problems while driving. Menu type design of instrument cluster is absolutely important for safe and efficient navigation. Method: Four menu types including paging, flow, icon, and list type were identified through reviewing the existing IVIS of vehicle and the menu structure of cellular phone. Four menu types were evaluated through experiment. The experiment consisted of primary and secondary task, which the primary task was to simulate a driving and the secondary task was to control an IVIS menu prototype. Task performances, menu type preferences, and eye-movement patterns were measured in this experiment. Results: The result shows that icon type was the best design in aspect of task performance and preference. A clue for next menu item provided a positive effect for efficient menu navigation. It was identified that most of subjects gazed the middle-top area of IVIS screen from eye-movement pattern. Conclusion: A basic design of Instrument Cluster IVIS was proposed considering the result of this study in the final. Application: The results of this study can be effectively used in the design of Instrument Cluster IVIS.

Comparison of Epistemic Characteristics of Using Primary and Secondary Data in Inquiries about Noise Conducted by Elementary School Preservice Teachers: Focusing on the Cases of Science Inquiry Reports (소음에 대한 초등 예비교사들의 탐구에서 나타나는 1차 데이터와 2차 데이터 활용의 인식적 특징 비교 - 과학탐구 보고서 사례를 중심으로 -)

  • Chang, Jina;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.81-94
    • /
    • 2024
  • This study explores and conducts an in-depth comparison of the epistemic characteristics in different data types utilized in the science inquiries of preservice teachers regarding noise as a risk in everyday life. Focusing on primary and secondary data in the context of science inquiries about noise, we examined how these data types differ in science inquires in terms of inquiry design, data collection, and analyses. The findings reveal that sensor-based primary data enable direct measurement and observation of key phenomena. Conversely, secondary data rely on predetermined measurement methods within a public data system. These differences require different epistemic considerations during the inquiry process. Based on these findings, we discuss the educational implications concerning teaching approaches for science inquiries, teacher education for inquiry teaching, and the development of risk response competencies in preparation for the VUCA (Volatility, Uncertainty, Complexity, and Ambiguity) era.

Optimal Design of CEDM considering the Dynamic Characteristics (제어봉 구동장치의 동적 특성을 고려한 최적설계)

  • 김인용;진춘언
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • The dynamic characteristics of Control Element Drive Mechanism(CEDM) for Korea Standard Nuclear Power Plant are studied with the CEDM modeled as a secondary mass in a simplified two degree of freedom system, while the reactor vessel as a primary mass. The optimal .mu.-f curve is developed to reduce the response amplitudes of both primary and secondary masses. In order to improve a design it is proposed that the natural frequency ratio, f, should be converged to 0.93, the mass ratio, .mu., should not be reduced, and the result should be converged to the optimal .mu.-f curve. Optimal design for CEDM components has been carried out and the response amplitude ratios of reactor are reduced 10.5 - 19.7% while those of CEDM are reduced 6.3 - 3.4%.

  • PDF

Estimation of Fatigue Characteristics Using Weibull Statistical Analysis with Aramid Fiber on LNGC Secondary Barrier (LNGC 2차 방벽에 적용된 Aramid 섬유의 Weibull 통계 분석을 이용한 피로특성 평가)

  • Park, Jin Hyeong;Oh, Dong Jin;Kim, Min Gyu;Kim, Myung Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.415-420
    • /
    • 2017
  • Insulation systems in Liquefied Natural Gas Carriers (LNGC) are vulnerable to sloshing impact and fatigue loads because of waves. If gas leaks into the primary barrier, the Flexible Secondary Barrier (FSB) prevents the leakage of gas in this system. Fatigue strength of the FSB largely depends on the behavior of composite materials. In this study, a new system is applied to the FSB using aramid fiber to improve the fatigue strength of the secondary barrier, with the intention of replacing conventional E-glass fibers. The manufacturing method involved varying the ratio of the aramid fiber to the E-glass fiber for optimum design of the FSB. The fatigue tests results of the secondary barrier using aramid fiber were superior to that using E-glass fiber. The statistical analysis is performed to obtain the fatigue test results and estimate the probability of failure as well as the design guideline of LNGC secondary barriers.

Design and Simulation Technologies of Flat Transformer with High Power Current (대전류 출력형 Flat Transformer 설계 및 해석 기술)

  • Han, Se-Won;Cho, Han-Goo;Woo, Bung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.15-17
    • /
    • 2002
  • Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Improvement of the Thermal Behavior of the Secondary Part of Synchronous Linear Motors with High Speed and Thrust (고속.대추력 동기식 리니어모터 세컨더리 파트의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.505-512
    • /
    • 2011
  • Linear permanent magnet synchronous motors utilize high-energy product permanent magnet to produce high thrust, velocity and acceleration. Such motors are finding applications requiring high positioning accuracy and speed response, for example, machine tools, in the absence of mechanical gears and ball screw systems. A disadvantage of the linear motors is high power loss in comparison with rotary motors. For the application of the linear motors to machine tools, it is required to use water coolers and to improve the thermal behavior through insulation and structure optimization or control strategies. This paper presents the function of the secondary part of the linear synchronous motor as to the thermal behavior and the improving method. The result shows cooling pipe combined with an insulation layer is a suitable design for improving of the thermal behavior.

Design and Implementation of Sensor-based Secondary Vehicle Accident Prevention System (센서 기반의 차량 2차사고 방지 시스템 설계 및 구현)

  • Lim, Kyung-Gyun;Kim, Gea-Hee;Jeong, Seon-Mi;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.313-321
    • /
    • 2017
  • Traffic accidents in the country have steadily increased. Although IOT technologies have been applied so as to prevent the primary accident, practical solutions to prevent the secondary accident have not been suggested. A general guideline is simply recommended. In this paper, utilizing existing communication technology, we implement a proposed model and its simulation to prevent the secondary accident. When it is possible for a driver to secure visibility, the secondary accident can be prevented; In areas like tunnel, mountain terrain, and curve road with heavy traffic, where the driver has difficulty in securing the visibility, the secondary accident rates after the primary accident have been increasing. Therefore, we implement an accident prevention system that determines the primary accident utilizing sensor technology and prevents the secondary accident communicating through V2V or V2I. After the simulation, we found that the proposed model and the existing model made no difference with regard to the secondary accident rates when the visibility of the driver is secured; With the application of the proposed model, however, the accident rates decreased for 3-7 percent even though the visibility and communication were not secured.

The Study of Numerical Simulation on the Thermal Flow Performance for the Design of Low Emission Stoker Type Municipal Waste Incinerator (저공해 스토커형 도시폐기물 소각로 설계를 위한 열유동 수치해석 연구)

  • 전영남;송형운;김미환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • A Numerical simulation on the thermal flow performance was carried out to propose the incinerator type for the domestic refuses and to investigate the design factor and operating conditions. The SSTI(Standard Stoker Type Incinerator) proposed in this study was modified from the type with central f)ow. It has the characteristics of good mixing between refuse and hot combustion gas in primary combustion chamber and between unburned gas inflowing and secondary air jet in secondary chamber. By predictive results, the SSTI was no recirculation zone in secondary chamber so that mixing time was increased with high residence time. It has good characteristics of combustion and low emission. Parametric screening studies have been understood with phenomenon of combustion in incinerator.