• 제목/요약/키워드: The Newmark Method

검색결과 351건 처리시간 0.021초

연약지반 직렬 무한궤도 주행차량의 선회특성 연구 (A Study on the Steering Characteristics of Tandem Tracked Vehicle on Extremely Cohesive Soft Soil)

  • 김형우;이창호;홍섭;최종수;여태경;김시문
    • Ocean and Polar Research
    • /
    • 제32권4호
    • /
    • pp.361-367
    • /
    • 2010
  • The principal objective of this paper was to evaluate the steering characteristics of a tandem tracked vehicle, each side of which features two tandem tracks, when crawling on extremely cohesive soft soil. The tandem tracked vehicle is assumed to be a rigid-body with 6-dof. The dynamic analysis program of the tandem tracked vehicle was developed via Newmark's method and the incremental-iterative method. A terra-mechanics model of extremely cohesive soft soil was implemented according to the relationships of normal pressure to sinkage, of shear resistance to shear displacement, and of dynamic sinkage to shear displacement. In order to simplify the characteristics of contact interaction between track segments and cohesive soft soil, the characteristics of soil are equated to the properties of intact soil. In an effort to evaluate the steering characteristics of a tandem tracked vehicle crawling on extremely cohesive soft soil, a series of dynamic simulations were conducted for a tandem tracked vehicle model with respect to the front and rear steering angle, the steering ratio, and the initial velocity.

초고층 전단벽-골조 아웃리거 구조시스템의 지진하중에 대한 시간이력해석 (Transient Analysis of High-rise Wall-Frame Structures with Outriggers under Seismic Load)

  • 김진만;최은희;박대규;이재홍
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.303-312
    • /
    • 2008
  • 본 논문에서는 초고층 전단벽-골조 아웃리거 구조시스템의 지진하중에 대한 시간이력해석을 수행하였다. 전단벽과 골조를 전단변형과 휨변형이 모두 고려된 (티모센코) 보 이론을 기본으로 하여 개발되었으며, 개발된 해석모델은 일차원 유한요소로 정식화되어 다양한 수치해석 예제들의 거동 분석을 하였다. 해석모델은 아웃리거 트러스의 강성을 회전 스프링 강성으로 치환하여 적용한 것으로 아웃리거 트러스의 형태나 위치에 의한 구조물의 거동 효과를 쉽게 알 수 있다. 앞선 연구를 바탕으로 전단벽-골조 시스템과 전단벽-골조에 아웃리거 시스템을 결합한 건물의 지진해석모델을 개발하고자 하였다. 전단벽-골조 구조는 전단벽과 골조의 전단변형과 휨병형을 동시에 고려한 해석모델을 기반으로 하였으며, 아웃리거 트러스의 강성 해석 역시 전단변형과 휨변형을 모두 고려한 해석 모델을 기반으로 지진해석모델을 개발하였다. 개발되어진 해석 모델의 정확성을 입증하기 위해서 3차원 해석 프로그램인 MIDAS GEN을 이용하여 그 해석결과를 비교하였다. 그 결과 초고층건물의 초기설계단계에서 많은 시간이 소요되는 지진하중에 대한 시간이력해석을 효율적이며 또한 비교적 정확히 수행할 수 있을 것으로 기대된다.

非線形 케이블 有限要素에 관한 硏究 (A Study on a Nonlinear Cable Finite Element)

  • 장승필;박정일
    • 한국해안해양공학회지
    • /
    • 제1권1호
    • /
    • pp.93-101
    • /
    • 1989
  • 본 논문에서는 가이드 타워, 텐션 레그 프랫폼, 무어링 부이, 해저 케이블, 사장교, 현수교, 케이블 루프 등과 같은 해상 및 육상 구조물의 유한요소 모델에 사용하기 위한 기하학적 비선형 케이블 요소를 연구 제시하였으며, 케이블 요소는 평면내에서 임의의 하중과 기하형상을 갖는 케이블에 대한 탄성현수 케이블 이론으로부터의 적합방정식과 연성행렬을 직접 이용하여 유도하였다. 또한, 유도된 케이블 유한요소에 근거하여, 케이블 부재를 사용하는 구조물들의 유한요소 해석을 위해 전산 프로그램을 개발하였으며, 시간영역 동적 해석을 위해 뉴마크-베타의 직접적분법을 사용하였고, 각 시간간격에서의 비선형 평형방정식 및 적합방정식을 풀기 위한 방법으로서 뉴톤-랩슨의 반복법을 사용하였다. 이상과 같이 개발된 전산 프로그램을 이용하여 케이블 부재에 대한 정적 및 동적 해석을 수행한 후 그 결과를 분석ㆍ고찰하여 보았다.

  • PDF

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.

차량하중에 의한 사장교의 동적거동에 관한 연구 (A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load)

  • 박춘혁;한재익
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1299-1308
    • /
    • 1994
  • 본 연구는 사장교의 차량하중에 의한 동적거동을 파악하고자 수치해석상 비교적 간단한 일본의 풍리(豊里)(Toyosato)대교(大橋)의 자료를 근거로하여 수치해석 대상모델을 구조형식별로, 여러가지 설계변수-즉, (1) 경간비, (2) 중앙경간장과 주탑높이와의 비, (3) 거어더의 강성, (4) 주탑의 강성, (5) 케이블의 강성-을 변화시켜 수치해석을 수행하여 동적거동을 파악하고, 그 결과를 가지고 설계변수의 영향 및 충격계수의 변화에 대하여 비교 분석하였다. 이때 변위 및 단면력의 영향선을 구하기 위한 해석은 전달행렬법을 이용하였으며, 동적해석에 있어서는 평면구조계의 집중질량계로 모델을 가정하여 차량과 교량의 운동방정식을 유도한 후 모드중첩법을 사용하여 각 질점에 대한 변위 및 단면력의 동적시간이력을 구하였다.

  • PDF

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

[ $Entr{\acute{e}}e$ ] Popularity Affects Nutrient Intake among School-Aged Children Eating School Breakfasts

  • An Min-Y.;Shanklin Carol W.;Wie Seung-Hee
    • Journal of Community Nutrition
    • /
    • 제8권2호
    • /
    • pp.102-106
    • /
    • 2006
  • The purposes of this study were to investigate the effects of the popularity of menu items in nutrient consumption of school-aged children participating in a School Breakfast Program. The weighed plate waste method was used to determine the nutrient intake of students. The nutrient intake was evaluated based on the popularity of the menu item, gender, and grades. The average intakes of all nutrients except energy, fiber, and sodium were well within the goals. Actual nutrient intake varied based upon the popularity of $entr{\acute{e}}es$ and the popularity of menu items was a main effect in nutrient content of meals. When the most popular $entr{\acute{e}}es$ were served, school-aged children's energy intake and School Breakfast Program participation rate increased. Saturated fat and sodium intakes also were higher than the goal when the most popular $entr{\acute{e}}es$ were served. The significant main effect was grades for total fat (p < 0.05) and calcium (p < 0.05), which was qualified by the two-way interaction between gender and grades for saturated fat (p < 0.05), protein (p<0.1), iron (p<0.01), vitamin C (p<0.01) and carbohydrates (p<0.001). Gender itself was not a significant main effect. Based on the findings, the suggestions for educating school-aged children on more healthful breakfast food choices and reformulating recipes for the popular $entr{\acute{e}}es$ are made. (J Community Nutrition 8(2): 102-106, 2006)

Computer aided failure prediction of reinforced concrete beam

  • Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.67-73
    • /
    • 2020
  • Traditionally used analytical approach to predict the fatigue failure of reinforced concrete (RC) structure is generally conservative and has certain limitations. The nonlinear finite element method (FEM) offers less expensive solution for fatigue analysis with sufficient accuracy. However, the conventional implicit dynamic analysis is very expensive for high level computation. Whereas, an explicit dynamic analysis approach offers a computationally operative modelling to predict true responses of a structural element under periodic loading and might be perfectly matched to accomplish long life fatigue computations. Hence, this study simulates the fatigue behaviour of RC beams with finite element (FE) assemblage presenting a simplified explicit dynamic numerical solution to show computer aided fatigue behaviour of RC beam. A commercial FEM package, ABAQUS has been chosen for this complex modelling. The concrete has been modelled as a 8-node solid element providing competent compression hardening and tension stiffening. The steel reinforcements are simulated as two-node truss elements comprising elasto-plastic stress-strain behaviour. All the possible nonlinearities are duly incorporated. Time domain analysis has been adopted through an automatic Newmark-β time incremental technique. The program consists of twelve RC beams to visualize the real behaviour during fatigue process and to obtain the reliability of the study. Both the numerical and experimental results indicate a redistribution of stresses along the time and damage accumulation of beam which severely affect the serviceability and ultimate capacity of RC beam. The output of the FEM analysis demonstrates good match with the experimental consequences which affirm the efficacy of the computer aided model. The controlled fatigue damage evolution at service fatigue load limits makes the FE model an efficient tool in predicting high cycle fatigue behaviour of RC structures.

정적변위를 고려한 플랜트 구조물의 단자유도 폭발 해석 (Blast Analysis of Single Degree of Freedom Plant Structures Considering Static Displacement)

  • 이재균;이승훈;김한수
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.317-324
    • /
    • 2022
  • 본 논문에서는 등가 단자유도를 이용하여 구조부재의 정적변위를 고려하는 해석기법을 제시하였다. 기존의 단자유도 비선형 동적 해석 알고리듬을 구조부재의 초기정적변위의 영향을 고려할 수 있도록 개선하였다. 가정된 폭발하중 지속시간과 부재의 고유주기 비에 따라 정적변위가 최대응답에 미치는 영향의 차이와 폭발하중의 방향과 초기변위의 방향에 따른 차이를 확인하였다. 이에 따라 기존의 응답 차트를 정적변위를 고려할 수 있도록 폭발하중의 형태에 따라 각각 제시하였다. 설계 예제를 정적변위가 고려된 응답 차트에 적용하여 부재의 최대 변위를 비교 및 분석하였다. 본 연구의 결과를 통해 초기 정적변위를 고려한 구조부재의 최대응답을 쉽게 산정할 수 있으며 본 연구에서 제시한 응답 차트는 플랜트 또는 군사시설물의 내폭 설계에 활용될 수 있다.

수치해석을 이용한 연약지반 4열 강체 무한궤도 차량의 최적 선회비 연구 (Study on Steering Ratio of Four-Row Rigid Tracked Vehicle on Extremely Cohesive Soft Soil Using Numerical Simulation)

  • 김형우;이창호;홍섭;최종수;여태경;민천홍
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.81-89
    • /
    • 2013
  • This paper considers the steering characteristics of a four-row tracked vehicle crawling on extremely cohesive soft soil, where each side is composed of two parallel tracks. The four-row tracked vehicle (FRTV) is assumed to be a rigid body with 6-DOF. A dynamic analysis program for the tracked vehicle is developed using the Newmark-${\beta}$ method based on an incremental-iterative scheme. A terra-mechanics model of an extremely cohesive soft soil is implemented in the form of the relationships of the normal pressure to the sinkage, the shear resistance to the shear displacement, and the dynamic sinkage to the shear displacement. In order to investigate the steering characteristics of the four-row tracked vehicle, a series of dynamic simulations is conducted with respect to the distance between the left and right tracks (pitch), steering ratios, driving velocity, reference track velocity, lengths of the tracks, and properties of the cohesive soft soil. Through these numerical simulations, the possibility of using a kinematic steering ratio is explored.