• 제목/요약/키워드: The Mesozoic leucocratic granite

검색결과 5건 처리시간 0.019초

Temperature and Timing of the Mylonitization of the Leucocratic Granite in the Northeastern Flank of the Taebaeksan Basin

  • Kim, Hyeong-Soo
    • 한국지구과학회지
    • /
    • 제33권5호
    • /
    • pp.434-449
    • /
    • 2012
  • The Mesozoic leucocratic granite in the northeastern margin of the Taebaeksan Basin was transformed to protomylonite and mylonite. Mylonitic foliations generally strike to NWWNW and dip to NE with the development of a sinistral strike-slip (top-to-the-northwest) shear sense. Grain-size reduction of feldspar in the mylonitized leucocratic granite occurred due to fracturing, myrmekite formation and neocrystallization of albitic plagioclase along the shear fractures of K-feldspar porphyroclasts. As the deformation proceeded, compositional layering consisting of feldspar-, quartz- and/or muscovite-rich layers developed in the mylonite. In the feldspar-rich layer, fine-grained albitic plagioclase and interstitial K-feldspar were deformed dominantly by granular flow. On the other hand, quartz-rich layers containing core-mantle and quartz ribbons structures were deformed by dislocation creep. Based on calculations from conventional two-feldspar and ternary feldspar geothermometers, mylonitization temperatures of the leucocratic granite range from 360 to $450^{\circ}C$. It thus indicates that the mylonitization has occurred under greenschist-facies conditions. Based on the geochemical features and previous chronological data, the leucocratic granite was emplaced during the Middle Jurassic at volcanic arc setting associated with crustal thickening. And then the mylonitization of the granite occurred during the late Middle to Late Jurassic (150-165 Ma). Therefore, the mylonitization of the Jurassic granitoids in the Taebaeksan Basin was closely related to the development of the Honam shear zone.

안양장석광상의 광화작용에 관한 연구 (A Study on Mineralization of Anyang Feldspar Ore Deposit)

  • 박부성;지정만
    • 자원환경지질
    • /
    • 제27권1호
    • /
    • pp.11-28
    • /
    • 1994
  • The Anyang Feldspar Mine is located in Seoksu Dong, Anyang City, Kyeonggi Do, Korea and has a long exploitation record that is once produced high grade sodium feldspars, for glaze. Geologically, This area is mainly composed of Mesozoic Jurassic biotite granite (Anyang granite) which intruded Precambrian Kyeonggi Gneiss Complex outcroped near the mining area. The deposit is localized on the southwest hill side of Anyang granite batholith and is confined in hydrothemal alteration zone formed by sodium-rich alkali hydrothermal fluids along the fractures of leucocratic granite showing later differentiation facies in the biotite granite. The hydrothermal alteration is characterized by albitization, sericitization, and desilication. The microscopic observation and EPMA, XRD analysis of the feldspar ores show that major minerals are albite and quartz and accessory minerals are orthoclase and sericite, and they are rarely associated with perthite, fluorite, zircon, kaolinite, molybdenite, microcline and iron-oxide. In the REE pattern, the strong negative Eu anomalies of the feldspar ores indicate the influence of feldspar fractionation and show similiar pattern of the host leucocratic granite. The filling temperature of quartz crystals in ore zone ranges from $276^{\circ}C$ to $342^{\circ}C$, and it is inferred that the alteration occurred by the hypothermal solution.

  • PDF

금산지역 형석광화작용과 관련된 화강암질암의 지구화학적 자료 해석 (Geochemical Data Analysis of the Granitic Rocks Potentially Related to Fluorite Mineralization in the Geumsan District)

  • 진호일;전효택;민경원
    • 자원환경지질
    • /
    • 제28권4호
    • /
    • pp.369-379
    • /
    • 1995
  • About forty ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in the Geumsan district and are believed to be genetically related to the Mesozoic Geumsan granitic rocks. Based on their petrogeochemistry and isotopic dating data, the granitic rocks in this district can be classified into two groups ; the Jurassic granitic rocks(equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Cretaceous granitic rocks(seriate pink-feldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Spatial distribution of fluorite ore deposits, fluorine contents of granitic rocks and fracture patterns in this district suggest that three granitic rocks(equigranular biotite granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite) of the Cretaceous period be genetically related to the fluorite mineralization. In these fluorite-related granitic rocks, fluorine is most highly correlated with Cs(correlation coefficient(r)>0.9), and also highly with MnO, U, Sm, Yb, Lu, Zn, Y, Li(r>0.7). Statistically the variation of fluorine in the fluorite-related granitic rocks can be explained in terros of only three elements, such as Lu, CaO and Cs, and the fluorite-related granitic rocks can be discriminated from the fluorite-nonrelated granitic rocks by a linear functional equation of La, Ce, Cs and F($Z_{Ust}=-1.38341-0.00231F-0.19878Ce+0.38169La+0.54720Cs$). Also, equigranular alkali-feldspar granite is classified into the fluorite-related granitic rocks by means of the linear functional equation($Z_{Ust}$).

  • PDF

금산지역에 분포하는 화강암류의 암석지구화학 (Petrogeochemistry of Granitic Rocks Distributed in the Geumsan District, Korea)

  • 진호일;민경원;전효택;박영석
    • 자원환경지질
    • /
    • 제28권2호
    • /
    • pp.123-137
    • /
    • 1995
  • The Mesozoic Geumsan granitic rocks of various composition are distributed in the Geumsan district, the central part of the Ogcheon Fold Belt. About 40 ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in this district and are believed to be genetically related to the granitic rocks. Based on their petrography and geochemistry, the granitic rocks in this district can be classified into two groups ; the Group I( equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Group II(seriate pinkfeldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Interpreted from their isotopic dating data and geochemical characteristics, the Group I and the Group II are inferred to be emplaced during the Jurassic(~184Ma), and the Cretaceous to the early Tertiary period(~59Ma), respectively. Both Group I and Group II generally belong to magnetite-series granitoids. The Cretaceous granitic rocks of Group II are more highly evolved than those of the Jurassic Group I. The Rb-Sr variation diagram suggests that the granitic rocks of the Jurassic Group I and of the Cretaceous Group II be evolved mainly during the processes of fractional crystallization and partial melting, respectively.

  • PDF

경기편마암 복합체의 Rb-Sr 연대측정연구 (Geochronological Study on Gyeonggi Massif in Korea Peninsula by the Rb-Sr Method)

  • Seung Hwan Choo;Dong Hak Kim;Won Mok Jae
    • Nuclear Engineering and Technology
    • /
    • 제15권1호
    • /
    • pp.23-32
    • /
    • 1983
  • 한반도에 분포하는 암석으로서 최고기의 암석으로 알려지고 있는 경기편마암 복합체중, 양평지역에 분포하는 우백질 편마암과 화강편마암류 및 시흥 지역에 분포하는 호상-안구상 편마암류를 대상으로 Rb-Sr법에 의한 암석 연대측정 연구를 실시하였다. 그 결과, 우백질 편마암과 호상-안구상 편마암류의 생성연대는 22억 내지 23억년으로 밝혀졌고, 화강편마암류의 관입시기는 14억년으로 측정되었다. 양평지역에서 채취한 시료중, 심하게 변질된 편마암류의 연대는 5억년이었다. 이 연대는 아마도 열수작용을 동반한 Caledonian조산운동의 시기와 밀접한 관계가 있을 것이다. 기타 여러지역에서 채취한 편마암류들에서 공통적으로 8-9억년의 년대가 측정된 것은 경기편마암 복합체가 받은 선캠브리아기의 화성 활동 혹은 광역변성 작용의 시기일 것으로 생각된다. 편마암류에서 분리한 흑운모는 시료 채취 지역에 다라 1억2천만년에서 2억7천만년으로 측정되었으며 이 연대는 본 지역에도 중생대 내지는 고생대 화성활동이 있었음을 뜻한다.

  • PDF