• 제목/요약/키워드: The Gamma Waves

검색결과 64건 처리시간 0.022초

남인도양의 해수면 변화 특성 (Characteristics on sea level variations in the South Indian Ocean)

  • 윤홍주
    • 한국정보통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.1094-1103
    • /
    • 2001
  • 남인도양의 암스테르담- 크호제트- 케르겔른 지역에서의 Topex/Poseidon의 고도계 자료와 Tide Gauge의 해면계 자료를 상호 비교 및 검정하였다. 8개 주요 조석성분들의 진폭의 변통성과 관련하여 해양조석모델의 결과와 조화분해해석의 결과간의 미소한 차이는 궁극적으로 수온, 밀도 및 바람보다는 주로 남극순환해류의 흐름에 영향을 받다. 두 자료간의 상관관계(correlation coefficient)와 편차(rms)를 보면, 암스테르담 대지지역에서는 c=-0.12 및 rms=11.40cm, 크호제트 대지지역에서는 c=0.05 및 rms=5.38cm, 케르겔른 대지지역에서는 c=0.83 및 rms=2.83cm로 그리고 케르겔른 해안지역에서는 c=0.24 및 rms=6.72cm로 각각 나타났다. 이 중 케르겔른 대지지역이의 높은 상관성은 해안지역으로부터 멀어질수록 정도 높은 고도계의 자료를 획득할 수 있다는 것을 의미한다. 케르겔른 해안지역과 케르겔른 대지지역의 해수면의 변화의 특성은 2일 상의 장주기에 대해서는 상호 높은 상관성과 함께 유사한 해수면의 변화를 가진다. 케르겔른 대지지역 내에서는 유속이 -3.9~-4.2cm/sec이고 주기가 167days 그리고 진폭이 10cm인 바로크리닉 로쓰비파가 서쪽으로 전파한다.

  • PDF

Evidence for Adenosine Triphosphate (ATP) as an Excitatory Neurotransmitter in Guinea-Pig Gastric Antrum

  • Kang, Tong-Mook;Xu, Wenxie;Kim, Sung-Joon;Ahn, Seung-Cheol;Kim, Young-Chul;So, In-Suk;Park, Myoung-Kyu;Uhm, Dae-Yong;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.165-174
    • /
    • 1999
  • We explore the question of whether adenosine 5'-triphosphate (ATP) acts as an excitatory neurotransmitter in guinea-pig gastric smooth muscle. In an organ bath system, isometric force of the circular smooth muscle of guinea-pig gastric antrum was measured in the presence of atropine and guanethidine. Under electrical field stimulation (EFS) at high frequencies (>20 Hz), NO-mediated relaxation during EFS was followed by a strong contraction after the cessation of EFS (a 'rebound-contraction'). Exogenous ATP mimicked the rebound-contraction. A known $P_{2Y}-purinoceptor$ antagonist, reactive blue 2 (RB-2), blocked the rebound-contraction while selective desensitization of $P_{2Y}-purinoceptor$ with ${\alpha},{\beta}-MeATP$ did not affect it. ATP and 2-MeSATP induced smooth muscle contraction, which was effectively blocked by RB-2 and suramin, a nonselective $P_2-purinoceptor$ antagonist. Particularly, in the presence of RB-2, exogenous ATP and 2-MeSATP inhibited spontaneous phasic contractions, suggesting the existence of different populations of purinoceptors. Both the rebound-contraction and the agonist-induced contraction were not inhibited by indomethacin. The rank orders of agonists' potency were 2-MeSATP > ATP ${ge}$ UTP for contraction and ${\alpha},{\beta}-MeATP\;{\ge}\;{\beta},{\gamma}-MeATP$ for inhibition of the phasic contraction, that accord with the commonly accepted rank order of the classical $P_{2Y}-purinoceptor$ subtypes. Electrical activities of smooth muscles were only slightly influenced by ATP and 2-MeSATP, whereas ${\alpha},{\beta}-MeATP$ attenuated slow waves with membrane hyperpolarization. From the above results, it is suggested that ATP acts as an excitatory neurotransmitter, which mediates the rebound-contraction via $P_{2Y}-purinoceptor$ in guinea-pig gastric antrum.

  • PDF

Design and Fabrication of the 0.1${\mu}{\textrm}{m}$ Г-Shaped Gate PHEMT`s for Millimeter-Waves

  • Lee, Seong-Dae;Kim, Sung-Chan;Lee, Bok-Hyoung;Sul, Woo-Suk;Lim, Byeong-Ok;Dan-An;Yoon, yong-soon;kim, Sam-Dong;Shin, Dong-Hoon;Rhee, Jin-koo
    • Journal of electromagnetic engineering and science
    • /
    • 제1권1호
    • /
    • pp.73-77
    • /
    • 2001
  • We studied the fabrication of GaAs-based pseudomorphic high electron mobility transistors(PHEMT`s) for the purpose of millimeter- wave applications. To fabricate the high performance GaAs-based PHEMT`s, we performed the simulation to analyze the designed epitaxial-structures. Each unit processes, such as 0.1 m$\mu$$\Gamma$-gate lithography, silicon nitride passivation and air-bridge process were developed to achieve high performance device characteristics. The DC characteristics of the PHEMT`s were measured at a 70 $\mu$m unit gate width of 2 gate fingers, and showed a good pinch-off property ($V_p$= -1.75 V) and a drain-source saturation current density ($I_{dss}$) of 450 mA/mm. Maximum extrinsic transconductance $(g_m)$ was 363.6 mS/mm at $V_{gs}$ = -0.7 V, $V_{ds}$ = 1.5 V, and $I_{ds}$ =0.5 $I_{dss}$. The RF measurements were performed in the frequency range of 1.0~50 GHz. For this measurement, the drain and gate voltage were 1.5 V and -0.7 V, respectively. At 50 GHz, 9.2 dB of maximum stable gain (MSG) and 3.2 dB of $S_{21}$ gain were obtained, respectively. A current gain cut-off frequency $(f_T)$ of 106 GHz and a maximum frequency of oscillation $(f_{max})$ of 160 GHz were achieved from the fabricated PHEMT\\`s of 0.1 m$\mu$ gate length.h.

  • PDF

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF