• 제목/요약/키워드: The City Structures

검색결과 606건 처리시간 0.027초

Vegetation Management Units and Its Landscape Structures of Mt. Cheolma, in Incheon City, Korea

  • Cho, Hyun-Je;Cho, Je-Hyuung
    • The Korean Journal of Ecology
    • /
    • 제25권4호
    • /
    • pp.205-211
    • /
    • 2002
  • For landscape ecological management of the isolated forestlands in Incheon city located in the western tip of South Korea, the forest vegetation of Mt. Cheolma was classified phytosciologically and mapped out its spatial distribution at a scale of 1:5,000. Characteristics of forest landscape structures were discussed in terms of the number and size of patches obtained by analy zing vegetation map. Units to manage the forest vegetation were categorized into eighteen communities, seventeen groups, and sixteen subgroups. Landscape elements were classified into five types: secondary vegetation, introduced vegetation for forestry (IVF), introduced vegetation for agriculture (IVA), and other elements. Two hundred and ninety-three forest landscape patches covers 443.3ha, of which IVF accounted for 316.8ha(71.5$\%$), the largest portion, secondary vegetation for 101.2ha(22.8$\%$), IVA for 6.2ha(1.4$\%$), and others for 19.1ha(4.3$\%$). The ratio of natural forest elements of 31.9$\%$ showed that this area was mainly comprised of artificially introduced vegetation, such as Robinia pseudoacacia plantation and Pinus rigida plantation. Forest landscape patches have a mean area of 4.5ha, a density of 66.1/100ha, and a diversity index of 0.87. It was estimated that differentiation of patches recognized in community level would be related to human interference and those in subordinate level to natural processes.

Vegetation Management Units and Its Landscape Structures of Mt. Cheolma, in Incheon City, Korea

  • Cho, Hyun-Je;Cho, Je-Hyung
    • 한국생태학회:학술대회논문집
    • /
    • 한국생태학회 2002년도 VIII 세계생태학대회
    • /
    • pp.71-77
    • /
    • 2002
  • For landscape ecological management of the isolated forestlands in Incheon city located in the western tip of South Korea, the forest vegetation of Mt. Cheolma was classified phytosciologically and mapped out its spatial distribution at a scale of 1:5,000. Characteristics of forest landscape structures were discussed in terms of the number and size of patches obtained by analyzing vegetation map. Units to manage the forest vegetation were categorized into eighteen communities, seventeen groups, and sixteen subgroups. Landscape elements were classified into five types: secondary vegetation, introduced vegetation for forestry (IVF), introduced vegetation for agriculture (IVA), and other elements. Two hundred and ninety-three forest landscape patches covers 443.3ha of which IVF accounted for 316.8ha(71.5%), the largest portion, secondary vegetation for f01.2ha(22.8%), IVA for 6.2ha(1.4%), and others for 19.1ha(4.3%). The ratio of natural forest elements of 31.9% showed that this area was mainly comprised of artificially introduced vegetation, such as Robinia pseudoacacia plantation and Pinus rigida plantation. Forest landscape patches have a mean area of 4.5ha, a density of 66.1/100ha, and a diversity index of 0.87. It was estimated that differentiation of patches recognized in community level would be related to human interference and those in subordinate level to natural processes.

  • PDF

Geo-DBMS의 3차원 Primitive를 이용한 공간정보데이터 구축 및 활용 - CityGML을 기반으로 - (Modeling Spatial Data in a geo-DBMS using 3D Primitives)

  • 박인혜;이지영
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권3호
    • /
    • pp.50-54
    • /
    • 2009
  • 최근 3차원 실내 외 공간정보데이터 모델에 대한 많은 연구가 진행되고 있다. 이러한 데이터 모델을 기반으로 구축된 3차원 공간데이터는 양이 방대하고 비교적 복잡한 구조를 갖는다. 따라서 이를 효과적으로 저장 및 관리, 응용하기 위해서는 DBMS를 활용하는 것이 유리하다. 이러한 필요에 의해 Gep-DBMS에서 데이터를 저장하고 응용하는 연구가 많이 이루어지고 있는데 Oosterom, Arens 등이 3차원 건물, 지표의 Geometry와 Topology를 DBMS에 저장하는 방법을 연구하였다. 본 논문은 GML3 기반의 3차원 도시 모델의 저장 및 교환을 위한 포맷인 CityGML 1.0을 따르는 구조로 데이터를 데이터베이스에 저장하였으며, 상용 DBMS인 Oracle Spatial 11g를 사용하였다.

  • PDF

Field monitoring of boundary layer wind characteristics in urban area

  • Li, Q.S.;Zhi, Lunhai;Hu, Fei
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.553-574
    • /
    • 2009
  • This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from more than 30 anemometers installed at 15 different height levels on 325 m high Beijing Meteorological Tower and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Profiles of mean wind speed are presented based on the field measurements and are compared with empirical models' predictions. Relevant parameters of atmospheric boundary layer at urban terrain are determined from the measured wind speed profiles. Furthermore, wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.

Response of structures to seismic sequences corresponding to Mexican soft soils

  • Diaz-Martinez, Gerardo;Ruiz-Garcia, Jorge;Teran-Gilmore, Amador
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1241-1258
    • /
    • 2014
  • This is paper presents the results of an analytical study aimed at evaluating the effect of narrow-banded mainshock/aftershock seismic sequences on the response of structures built on very soft soil sites. Due to the scarce availability of recorded seismic sequences in accelerographic stations located in the lake-bed of Mexico City, artificial narrow-banded sequences were employed. In the first part of this study, a parametric investigation was carried out to identify the mainshock/aftershock ground motion features that have detrimental effects in the seismic performance of equivalent single-degree-of-freedom systems representative of framed-buildings that house standard and essential facilities. In the second part of this work, the seismic response of two (8- and 18-story) steel-moment resisting frames that house essential facilities is examined. It is concluded that buildings with fundamental periods of vibration longer than the dominant period of the mainshock can experience a significant increment in their inter-story drift demands due to the occurrence of an aftershock.

Effect of soil-structure interaction on seismic damage of mid-rise reinforced concrete structures retrofitted by FRP composites

  • Van Cao, Vui
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.307-317
    • /
    • 2018
  • The current study explores the soil-structure interaction (SSI) effect on the potential seismic damage of mid-rise non-seismically designed reinforced concrete frames retrofitted by Fibre Reinforced Polymer (FRP). An 8-storey reinforced concrete frame poorly-confined due to transverse reinforcement deficiency is selected and then retrofitted by FRP wraps to provide external confinement. The poorly-confined and FRP retrofitted frames with/without SSI are modelled using hysteretic nonlinear elements. Inelastic time history and damage analyses are performed for these frames subjected to different seismic intensities. The results show that the FRP confinement significantly reduces one or two damage levels for the poorly-confined frame. More importantly, the SSI effect is found to increase the potential seismic damage of the retrofitted frame, reducing the effectiveness of FRP retrofitting. This finding, which is contrary to the conventionally beneficial concept of SSI governing for decades in structural and earthquake engineering, is worth taking into account in designing and evaluating retrofitted structures.

Nonlinear analysis of cable-supported structures with a spatial catenary cable element

  • Vu, Tan-Van;Lee, Hak-Eun;Bui, Quoc-Tinh
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.583-605
    • /
    • 2012
  • This paper presents a spatial catenary cable element for the nonlinear analysis of cable-supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are determined, wherein the effect of self-weight and pretension are taken into account. In the case of the initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to determine precisely the unstressed length of the cables. Several classical numerical examples are solved and compared with the other available numerical methods or experiment tests showing the accuracy and efficiency of the present elements.

Response evaluation of historical crooked minaret under wind and earthquake loadings

  • Ural, Ali;Dogangun, Adem;Meraki, Sakir
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.345-359
    • /
    • 2013
  • Turkey has been hosted various civilizations throughout centuries and it has become one of the oldest settlements all over the world due to the geographical location. Therefore, it has accommodated innumerable historical structures remain from the past civilizations. Protection and conservation of these historical constructions should be the major points for continuity of history. Crooked minaret is one of between these historical invaluable structures. It is located at the city of Aksaray and it dates back approximately 800 years. The minaret has lost its vertical position in time and bends on the North-West direction. In this study, general information is given about minarets and some restoration recommendations are given for crooked minaret based on performed some finite element structural analyses. These analyses are considered into three cases; 1-Dead loading, 2-Wind loading, and 3-Earthquake loadings. Results from the analyses are discussed detailed and some useful recommendations are given in the end of the study.

초고밀도 고층복합빌딩시스템의 최적설계 (Optimum Design For a Highly Integrated Tall Building System)

  • 조태준;김태수
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.14-20
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, as the alternative design for highly integrated city area. Considering a tri-axial symmetric conditions and boundary conditions for the three-dimensional building structure system, a two-dimensional model is composed. In the proposed indeterminate structural model, important design variables are determined for obtaining minimum horizontal deflections, reactions and bending moments at the ground level of the buildings. Regarding a case of the provided two spatial structures connected to 4 buildings, the optimum location of middle located spatial structure is 45% from the top of the building, which minimize the end moments at the bottom of the buildings. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the system due to the added internal truss-dome structures in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Probabilistic analysis of buckling loads of structures via extended Koiter law

  • Ikeda, Kiyohiro;Ohsaki, Makoto;Sudo, Kentaro;Kitada, Toshiyuki
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.167-178
    • /
    • 2009
  • Initial imperfections, such as initial deflection or remaining stress, cause deterioration of buckling strength of structures. The Koiter imperfection sensitivity law has been extended to describe the mechanism of reduction for structures. The extension is twofold: (1) a number of imperfections are considered, and (2) the second order (minor) imperfections are implemented, in addition to the first order (major) imperfections considered in the Koiter law. Yet, in reality, the variation of external loads is dominant over that of imperfection. In this research, probabilistic evaluation of buckling loads against external loads subjected to probabilistic variation is conducted by extending the concept of imperfection sensitivity. A truss arch subjected to dead and live loads is considered as a numerical example. The mechanism of probabilistic variation of buckling strength of this arch is described by the proposed method, and its reliability is evaluated.