• 제목/요약/키워드: The Chapter of Graph

검색결과 5건 처리시간 0.009초

Improving Accuracy of Chapter-level Lecture Video Recommendation System using Keyword Cluster-based Graph Neural Networks

  • Purevsuren Chimeddorj;Doohyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.89-98
    • /
    • 2024
  • 본 논문은 챕터 수준의 강의 동영상 추천 시스템에 있어서 추천의 정확도와 처리속도 간의 균형문제, 즉, 추천 정확도를 향상시키려면 처리 속도가 저하되고, 반대로 처리 속도를 높일 경우 정확도가 감소하는 문제에 대하여 연구한다. 본 논문에서는 이의 해결을 위하여 TF-IDF, K-Means++ Clustering, Graph Neural Network(GNN) 등 다양한 기법을 복합적으로 활용하는 방법을 제안한다. 즉, 챕터들의 유사성을 바탕으로 클러스터를 사전에 구성함으로써 검색 시의 계산량을 줄여 속도를 향상시키면서도, 클러스터를 노드로 하는 그래프에 대하여 GNN을 적용함으로써 추천의 정확도를 향상시키는 방법을 제안한다. 실험 결과 GNN을 사용한 경우 추천의 정확도가 MRR 지표에서 약 19.7% 증가하였으며, 유사도 기반의 정밀도에 있어서 약 27.7% 증가하는 결과를 확인할 수 있었다. 이를 통해 학습자의 질의에 보다 적합한 동영상 챕터를 추천하는 학습시스템 구축에 기여할 것으로 기대한다.

초등 수학 수업에서의 소프트웨어(Graphers) 활용 (Using an educational software Graphers in elementary school mathematics)

  • 황혜정
    • 대한수학교육학회지:학교수학
    • /
    • 제1권2호
    • /
    • pp.555-569
    • /
    • 1999
  • The graph unit(chapter) is a good example of a topic in elementary school mathematics for which computer use can be incorporated as part of the instruction. Teaching graph can be facilitated by using the graphing utilities of computers, which make it possible to observe the property of many types of graphs. This study was concerned with utilizing an educational software Graphers as an instructional tool in teaching to help young students gain a better understanding of graph concepts. For this purpose, three types of instructional activities using Graphers were shown in the paper. Graphers is a data-gathering tool for creating pictorial data chosen from several data sets. They can represent their data on a table or with six types of graphs such as Pictograph, Bar Graph, Line Graph, Circle Graph, Grid Plot and Loops. They help students to select the graph(s) which are the most appropriate for the purpose of analyzing data while comparing various types of graphs. They also let them modify or change graphs, such as adding grid lines, changing the axis scale, or adding title and labels. Eventually, students have a chance to interpret graphs meaningfully and in their own way.

  • PDF

초등학교 '물체의 속력' 단원 수업에서 교사와 학생이 느끼는 교수.학습곤란도 분석 (Analysis on the Degree of Difficulty in Teaching and Learning the 'Speed of Objects' Chapter)

  • 정하나;전영석
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제33권1호
    • /
    • pp.172-180
    • /
    • 2014
  • The first purpose of this study is to distinguish difficult chapters in 'Speed of objects' chapter and find the factors which give difficulty to the teachers and students. Also, it attempts to compare the students' assessment scores with the degree of difficulty in teaching and also with the degree of difficulty in learning. This report is expected to help science teachers develop their PCK(Pedagogical Content Knowledge) for teaching the chapter professionally. 15 teachers who had taught the 'Speed of Objects' chapter and their 386 students took part in the survey to acquire information about the difficulties in teaching and learning. 386 students also received a test to examine their understandings of the chapter. The results of this study are as follow; First, the degree of teachers' and students' difficulty is only affected by the contents, and the degree of onerousness felt by teachers is higher than that of students. Second, The topics caused higher difficulty to teachers were 'Understanding the meaning of motion(2nd lesson)', 'Understanding the meaning and unit of speed(5th lesson)', 'Changing unit of speed(6th lesson)', 'Drawing a distance-time graph(7th lesson)', and 'Understanding the relative motion(10th). The topics that led higher difficulty to students were the contents of 5th, 6th, and 7th lessons. Third, the 'Speed of Objects' chapter can be divided into 4 types of difficulty according to the degree of teaching and learning; 'Strong difficulty', 'Learning difficulty', 'Weak difficulty', and 'Teaching difficulty'. Last, students showed low achievement to the tasks that were related with 'Strong difficulty' and 'Teaching difficulty'.

2015 개정 수학 교과서에 반영된 창의·융합 역량 요소 탐색 - 중학교 1학년 그래프 단원을 중심으로 - (A Study on the Creativity and Convergence Competency Represented in the New Seventh Grade Mathematics Textbook)

  • 황혜정
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제32권4호
    • /
    • pp.477-493
    • /
    • 2018
  • 교과서 저자들은 여러 나라의 교과서 및 교수 학습 자료들을 참고하여 2015 개정 교육과정에서 강조하고 있는 역량들을 담아내고자 하였다. 문제해결, 추론, 의사소통 역량은 2009 개정 교육과정에서 수학적 과정 요소로 이미 강조되어 왔으며, 정보 처리 역량의 경우에는 이전 교육과정부터 계산기와 컴퓨터 사용이 교수 학습 방법 부문에 명시되어 있다(교육부, 2009). 또, 태도 및 실천은 다른 역량과 달리 정의적 영역의 특성을 갖는바, 문제 해결 과정에서 이 역량을 판단하는 것은 쉽지 않다. 그렇다면, 2015 개정 교육과정에 좀 더 관심을 기울이고 새롭게 반영해야 할 역량으로 창의 융합을 들 수 있다. 한편, 2015 개정 수학과 교육과정의 중학교 1학년에 '다양한 상황을 그래프로 나타내고, 주어진 그래프를 해석할 수 있다'는 성취기준이 도입되었다. 교과서마다 주어지는 문제 상황도 다양할 것이고 주어지는 그래프의 유형도 다를 것이다. 본 연구에서는 총 10종의 중학교 1학년 수학 교과서의 그래프 단원을 대상으로 수학 교과서에서의 창의 융합 역량 요소의 반영 현황을 살펴보고자 하였으며, 이를 위하여 선행 연구를 토대로 창의 융합 역량의 하위 요소로 생산적 사고, 독창적 사고, 여러 가지 방법으로 해결, 수학 내적 연결, 수학 외적 연결의 5가지 요소를 선정하여 적용하였다.

REGULAR MAPS-COMBINATORIAL OBJECTS RELATING DIFFERENT FIELDS OF MATHEMATICS

  • Nedela, Roman
    • 대한수학회지
    • /
    • 제38권5호
    • /
    • pp.1069-1105
    • /
    • 2001
  • Regular maps and hypermaps are cellular decompositions of closed surfaces exhibiting the highest possible number of symmetries. The five Platonic solids present the most familar examples of regular maps. The gret dodecahedron, a 5-valent pentagonal regular map on the surface of genus 5 discovered by Kepler, is probably the first known non-spherical regular map. Modern history of regular maps goes back at least to Klein (1878) who described in [59] a regular map of type (3, 7) on the orientable surface of genus 3. In its early times, the study of regular maps was closely connected with group theory as one can see in Burnside’s famous monograph [19], and more recently in Coxeter’s and Moser’s book [25] (Chapter 8). The present-time interest in regular maps extends to their connection to Dyck\`s triangle groups, Riemann surfaces, algebraic curves, Galois groups and other areas, Many of these links are nicely surveyed in the recent papers of Jones [55] and Jones and Singerman [54]. The presented survey paper is based on the talk given by the author at the conference “Mathematics in the New Millenium”held in Seoul, October 2000. The idea was, on one hand side, to show the relationship of (regular) maps and hypermaps to the above mentioned fields of mathematics. On the other hand, we wanted to stress some ideas and results that are important for understanding of the nature of these interesting mathematical objects.

  • PDF