• Title/Summary/Keyword: The Analysis

Search Result 311,415, Processing Time 0.167 seconds

Analysis Model Development and Sensitivity Analysis on Design Parameters of the Neutral Valve for HST (HST 중립밸브의 해석모델 개발 및 설계변수 민감도 분석)

  • Kim, D.M.;Jang, J.S.;Kim, S.C.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • The neutral valve for controlling the HST is one of the important valves for the vehicle control. Neutral valve takes a role of blocking or transmitting power to the vehicle. The operating principle of the neutral valve was developed through the analysis model. We also investigated the logical validity by analyzing the results of the analysis model. The analysis model was developed by using SimulationX witch is commercial software. The number of holes in the piston was selected as a variable initial compression of the spring, and the magnitude of the pressure pulsations and the diameter of the orifice for the sensitivity analysis were performed to design sensitivity analysis of the neutral valve.

Linear and Nonlinear Strut-Tie Model Approaches for Analysis and Design of Structural Concrete (콘크리트 부재의 해석/설계를 위한 선형 및 비선형 스트럿-타이 모델 방법)

  • 윤영묵;김병헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.375-379
    • /
    • 2003
  • In this paper, the linear and nonlinear strut-tie model approaches for the analysis and design of concrete structures are suggested. The validity of the approaches are examined through the strength analysis of four dapped-end beams tested to failure. According to the analysis results, the nonlinear strut-tie model approach which takes the various characteristics of nonlinear behaviors into account in the analysis and design of structural concrete and predicts the strength of structural concrete proven to be an effective method for structural analysis and design.

  • PDF

The study on the influence of contact pressure distribution on brake squeal analysis (브레이크 스퀼 해석에서 접촉압력분포의 영향에 관한 연구)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Uk;Boo, Kwang-Seok;Kim, Heung-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1120-1124
    • /
    • 2007
  • Recently in the automotive brake industry brake squeal noise has become one of the top automotive quality warranty issues. The contact pressure is used to predict friction coupling in the brake squeal analysis. The formulation of friction coupling has performed by nonlinear static analysis prior to the complex eigenvalue analysis. This paper proposes a validation methodology of squeal analysis using modal testing and contact analysis and examines the effect of predicted contact pressure that leads to the discrepancy between unstable complex mode and squeal frequency. This studies compose a three step validation process : examining the modal characteristics of component and assembly loaded contact pressure using modal testing and FEM analysis and verifying the contact pressure distribution using nonlinear static analysis and experiment. Finally, the unstable modes from complex eigenvalue analysis and realistic squeal frequency from the noise dynamometer are investigated.

  • PDF

Basic ]Requirements for Spectrum Analysis of Electroencephalographic Effects of Central Acting Drugs (중추성 작용 약물의 뇌파 효과의 정량화를 위한 스펙트럼 분석에 필요한 기본적 조건의 검토)

  • 임선희;권지숙;김기민;박상진;정성훈;이만기
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • We intended to show some basic requirements for spectrum analysis of electroencephalogram (EEG) by visualizing the differences of the results according to different values of some parameters for analysis. Spectrum analysis is the most popular technique applied for the quantitative analysis of the electroen- cephalographic signals. Each step from signal acquisition through spectrum analysis to presentation of parameters was examined with providing some different values of parameters. The steps are:(1) signal acquisition; (2) spectrum analysis; (3) parameter extractions; and (4) presentation of results. In the step of signal acquisition, filtering and amplification of signal should be considered and sampling rate for analog-to-digital conversion is two-time faster than highest frequency component of signal. For the spectrum analysis, the length of signal or epoch size transformed to a function on frequency domain by courier transform is important. Win dowing method applied for the pre-processing before the analysis should be considered for reducing leakage problem. In the step of parameter extraction, data reduction has to be considered so that statistical comparison can be used in appropriate number of parameters. Generally, the log of power of all bands is derived from the spectrum. For good visualization and quantitative evaluation of time course of the parameters are presented in chronospectrogram.

  • PDF

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

Patient Safety Management Activities of Korean Nurses: A Meta-Analytic Path Analysis (국내 간호사의 환자안전관리활동에 대한 메타경로분석)

  • Jeong, Seohee;Jeong, Seok Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.52 no.4
    • /
    • pp.363-377
    • /
    • 2022
  • Purpose: This study aimed to test a hypothetical model of Korean nurses' patient safety management activities using meta-analytic path analysis. Methods: A systematic review, meta-analysis, and meta-analytic path analysis were conducted following the PRISMA and MOOSE guidelines. Seventy-four studies for the meta-analysis and 92 for the meta-analytic path analysis were included. The R software program (Version 3.6.3) was used for data analysis. Results: Four variables out of 49 relevant variables were selected in the meta-analysis. These four variables showed large effect sizes (ESr = .54) or median effect sizes (ESr = .33~.40) with the highest k (number of studies) in the individual, job, and organizational categories. The hypothetical model for the meta-analytic path analysis was established using these variables and patient safety management activities. Twelve hypothetical paths were set and tested. Finally, the perception of the importance of patient safety management and patient safety competency directly affected patient safety management activities. In addition, self-efficacy, the perception of the importance of patient safety management, patient safety competency, and patient safety culture, indirectly affected patient safety management activities. Conclusion: Self-efficacy, the perception of the importance of patient safety management, patient safety competency, and the organization's patient safety culture should be enhanced to improve nurses' patient safety management activities.

Thermomechanical Behaviors of Shape Memory Alloy Using Finite Element Analysis (유한요소해석을 이용한 형상기억합금의 열적/기계적 거동 연구)

  • ;Scott R. White
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.833-836
    • /
    • 2001
  • The thermomechanical behaviors of the shape memory alloy were conducted through the finite element analysis of ABAQUS with UMAT user subroutine. The unified thermomechanical constitutive equation suggested by Lagoudas was adapted into the UMAT user subroutine to investigate the characteristics of the shape memory alloy. The three cases were solved to investigate the thermomechanical characteristics of the shape memory alloy. The material properties for the analysis were obtained by DSC and DMA techniques. According to the results, the thermomechanical characteristics, such as a shape memory effect and a pseudoelastic effect, could be obtained through the finite element analysis and the analysis results were revealed to agree well with the experimental results. Therefore, the finite element analysis using UMAT user subroutine is one of prominent analysis techniques to investigate the thermomechnical behaviors of the shape memory alloy quantitatively.

  • PDF

Finite Element Elasto-plastic Analysis of a Full Tension Levelling Process using Sequential Unit Models (순차 단순모델을 이용한 전체 인장교정 공정의 탄소성 유한요소해석)

  • Lee H. W.;Huh H.;Park S. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.201-204
    • /
    • 2001
  • The tension levelling process is performed to elongate the strip plastically in combination of tensile and bending strain so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat shape. This paper is concerned with a simulation of the tension levelling process based on the analysis of the unit model for the tension leveller. Analysis technique such as the sequential analysis of the nit model is suggested and verified with the assembly analysis of the unit model for the effective and economic analysis of the full set of the tension leveller. Analysis of the full tension levelling process using sequential unit models is carried out and provides the effect of the intermesh and optimum amount of the intermesh in tension levelling process.

  • PDF

A Modular Pointer Analysis using Function Summaries (함수 요약을 이용한 모듈단위 포인터분석)

  • Park, Sang-Woon;Kang, Hyun-Goo;Han, Tai-Sook
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.636-652
    • /
    • 2008
  • In this paper, we present a modular pointer analysis algorithm based on the update history. We use the term 'module' to mean a set of mutually recursive procedures and the term 'modular analysis' to mean a program analysis that does not need the source codes of the other modules to analyze a module. Since a modular pointer analysis does not utilize any information on the callers, it is difficult to design a precise analysis that does not lose the information related to the program flow or the calling context. In this paper, we propose a modular and flow- and context-sensitive pointer analysis algorithm based on the update history that can memory states of a procedure independently of the information on the calling context and keep the information on the order of side effects performed. Such a memory representation not only enables the analysis to be formalized as a modular analysis, but also helps the analysis to effectively identify killed side effects and relevant alias contexts.

An Efficient Approach on Reliability Analysis under Multidisciplinary Analysis Systems (다분야 통합해석 시스템의 효율적인 신뢰성 해석기법 연구)

  • Ahn, Joong-Ki;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.18-25
    • /
    • 2005
  • Existing methods have performed the reliability analysis using nonlinear optimization techniques. This is mainly due to the fact that they directly apply Multidisciplinary Design Optimization(MDO) frameworks to the reliability analysis formulation. Accordingly, the reliability analysis and the Multidisciplinary Analysis(MDA) are tightly coupled in a single optimizer, which hampers utilizing the recursive and function-approximation based reliability analysis methods such as the Advanced First Order Reliability Method(AFORM). In order to utilize the efficient reliability analysis method under multidisciplinary analysis systems, we propose a new strategy named Sequential Approach on Reliability Analysis under Multidisciplinary analysis systems(SARAM). In this approach, the reliability analysis and the MDA are decomposed and arranged in a sequential manner, making a recursive loop. The efficiency of the SARAM method was verified using three illustrative examples taken from the literatures. Compared with existing methods, it showed the least number of subsystem analyses over other methods while maintaining accuracy.