• 제목/요약/키워드: The AML1 gene

검색결과 41건 처리시간 0.031초

Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes

  • Lee, Hee Jae;Yang, Soo Jin
    • Nutrition Research and Practice
    • /
    • 제13권1호
    • /
    • pp.3-10
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The $NAD^+$ precursor nicotinamide riboside (NR) is a type of vitamin $B_3$ found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS: A subset of hepatocytes was treated with palmitic acid (PA; $250{\mu}M$) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR ($10{\mu}M$ and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS: Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS: These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.

Molecular Target Therapy of AKT and NF-kB Signaling Pathways and Multidrug Resistance by Specific Cell Penetrating Inhibitor Peptides in HL-60 Cells

  • Davoudi, Zahra;Akbarzadeh, Abolfazl;Rahmatiyamchi, Mohammad;Movassaghpour, Ali Akbar;Alipour, Mohsen;Nejati-Koshki, Kazem;Sadeghi, Zohre;Dariushnejad, Hassan;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권10호
    • /
    • pp.4353-4358
    • /
    • 2014
  • Background: PI3/AKT and NF-kB signaling pathways are constitutively active in acute myeloid leukemia and cross-talk between the two has been shown in various cancers. However, their role in acute myeloid leukemia has not been completely explored. We therefore used cell penetrating inhibitor peptides to define the contributions of AKT and NF-kB to survival and multi drug resistance (MDR) in HL-60 cells. Materials and Methods: Inhibition of AKT and NF-kB activity by AKT inhibitor peptide and NBD inhibitor peptide, respectively, resulted in decreased expression of mRNA for the MDR1 gene as assessed by real time PCR. In addition, treatment of HL-60 cells with AKT and NBD inhibitor peptides led to inhibition of cell viability and induction of apoptosis in a dose dependent manner as detected by flow cytometer. Results: Finally, co-treatment of HL-60 cells with sub-optimal doses of AKT and NBD inhibitor peptides led to synergistic apoptotic responses in AML cells. Conclusions: These data support a strong biological link between NF-kB and PI3-kinase/AKT pathways in the modulation of antiapoptotic and multi drug resistant effects in AML cells. Synergistic targeting of these pathways using NF-kB and PI3-kinase/AK inhibitor peptides may have a therapeutic potential for AML and possibly other malignancies with constitutive activation of these pathways.

Inhibitory Effect of Curcumin on MDR1 Gene Expression in Patient Leukemic Cells

  • Anuchapreeda, Songyot;Thanarattanakorn, Pattra;Sittipreechacharn, Somjai;Tima, Singkome;Chanarat, Prasit;Limtrakul, Pornngarm
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.866-873
    • /
    • 2006
  • When patients with cancers are treated with chemotherapeutic agents a long time, some of the cancer cells develop the multidrug resistance (MDR) phenotype. MDR cancer cells are characterized by the overexpression of multidrug resistance1 (MDR1) gene which encodes P-glycoprotein (Pgp), a surface protein of tumor cells that functions to produce an excessive efflux and thereby an insufficient intracellular concentration of chemotherapeutic agents. A variety of studies have sought potent MDR modulators to decrease MDR1 gene expression in cancer cells. Our previous study has shown that curcumin exhibits characteristics of a MDR modulator in KB-V1 multidrug-resistant cells. The aim of this study was to further investigate the effect of curcumin on MDR1 gene expression in patient leukemic cells. The leukemic cells were collected from 78 childhood leukemia patients admitted at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, in the period from July 2003 to February 2005. There were 61 cases of acute lymphoblastic leukemia (ALL), 14 cases of acute myeloblastic leukemia (AML), and 3 cases of chronic myelocytic leukemia (CML). There were 47 males and 31 females ranging from 1 to 15 years old. Bone marrows were collected. The leukemic cells were separated and cultured in the presence or absence of $10{\mu}M$ curcumin for 48 hours. MDR1 mRNA levels were determined by RT-PCR. It was found that curcumin reduced MDR1 gene expression in the cells from 33 patients (42%). Curcumin affected the MDR1 gene expression in 5 of 11 relapsed cases (45%), 10 of 26 cases of drug maintenance (38%), 7 of 18 cases of completed treatment (39%), and 11 of 23 cases of new patients (48%). The expression levels of MDR1 gene in leukemic patient cells as compared to that of KB-V1 cells were classified as low level (1-20%) in 5 of 20 cases (25%), medium level (21-60%) in 14 of 32 cases (44%), and high level (61-100%) in 14 of 20 cases (70%). In summary, curcumin decreased MDR1 mRNA level in patient leukemic cells, especially in high level of MDR1 gene groups. Thus, curcumin treatment may provide a lead for clinical treatment of leukemia patients in the future.

Development of Correlation Based Feature Selection Method by Predicting the Markov Blanket for Gene Selection Analysis

  • Adi, Made;Yun, Zhen;Keong, Kwoh-Chee
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.183-187
    • /
    • 2005
  • In this paper, we propose a heuristic method to select features using a Two-Phase Markov Blanket-based (TPMB) algorithm. The first phase, filtering phase, of TPMB algorithm works by filtering the obviously redundant features. A non-linear correlation method based on Information theory is used as a metric to measure the redundancy of a feature [1]. In second phase, approximating phase, the Markov Blanket (MB) of a system is estimated by employing the concept of cross entropy to identify the MB. We perform experiments on microarray data and report two popular dataset, AML-ALL [3] and colon tumor [4], in this paper. The experimental results show that the TPMB algorithm can significantly reduce the number of features while maintaining the accuracy of the classifiers.

  • PDF

Growth and Differentiation Effects of Homer3 on a Leukemia Cell Line

  • Li, Zheng;Qiu, Hui-Ying;Jiao, Yang;Cen, Jian-Nong;Fu, Chun-Mei;Hu, Shao-Yan;Zhu, Ming-Qing;Wu, De-Pei;Qi, Xiao-Fei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2525-2528
    • /
    • 2013
  • The Homer protein family, also known as the family of cytoplasmic scaffolding proteins, which include three subtypes (Homer1, Homer2, Homer3). Homer3 can regulate transcription and play a very important role in the differentiation and development for some tissues (e.g. muscle and nervous systems). The current studies showed that Homer3 abnormal expression changes in acute myeloid leukemia (AML). Forced expression of Homer3 in transfected K562 cells inhibited proliferation, influenced the cell cycle profile, affected apoptosis induced by $As_2O_3$ through inhibition of Bcl2 expression, and also promoted cell differentiation induced by 12-O-tetra decanoylphorbol-acetate (TPA). These results showed that Homer3 is a novel gene which plays a certain role in the occurrence and development of AML.

Rhus Verniciflua Stokes Extract Suppresses Expression of Metalloproteinases, iNOS and COX-2 in THP-1 Cells Via Inhibiting NF-𝜅B and MAPK Phosphorylation

  • Ko, Hwanjoo;Jang, Eungyeong;Kim, Youngchul
    • 대한한의학회지
    • /
    • 제41권4호
    • /
    • pp.12-26
    • /
    • 2020
  • Objectives: The aim of this study is to investigate the mechanisms involved in the anti-inflammatory and anti-tumor effects of Rhus verniciflua Stokes (RVS) on PMA-differentiated human monocytic leukemia THP-1 cells. Methods: Cells were treated with various concentrations of RVS decoction (0-300㎍/ml) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay. The expressions of MMP-2, MMP-9, TIMP-1, TIMP-2, iNOS and COX-2 mRNA and proteins were measured using RT-PCR and western blotting, respectively. Results: RVS suppressed expression of MMP-2 and MMP-9 mRNA. It also down-regulated iNOS and COX-2 mRNA and protein expression. RVS inhibited NF-𝜅B p65 activity and the phosphorylation of Akt and MAPK (ERK and p38 MAPK). Instead, the phosphorylation of JNK is increased at a very low concentration but decreased at higher concentrations. Conclusion: RVS is regarded to inhibit the expression of MMP and TIMP as well as iNOS and COX-2 gene expression via directly inhibiting the activation of NF-𝜅B and phosphorylation of MAPK pathway in THP-1 cells. This suggests RVS have potential to be used as a therapeutic agent for acute myeloid leukemia (AML).

Brain-type natriuretic peptide (BNP)의 고지방 식이 유도에 의한 인슐린 저항성 개선 효과 (Brain-type Natriuretic Peptide Ameliorates High-fat Diet-induced Hepatic Insulin Resistance)

  • 정대영;박정빈;정명호
    • 생명과학회지
    • /
    • 제34권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Brain-type natriuretic peptide (BNP)은 뇌나트륨이뇨펩티드로, 좌심실의 심근세포에서 분비되는 호르몬으로, 심장과 신장에 작용하여 혈관 확장과 나트륨 이뇨 작용 등을 하는 것으로 알려져 있으나, 최근에는 다양한 조직에서 대사 작용을 조절하는 것으로 보고된다. 본 연구에서는 간 조직에서 BNP의 영향을 알기 위해 BNP가 고지방식이에 의해 유도되는 인슐린 저항성을 개선하는지를 조사하였다. BNP을 주입한 쥐와 control로서 saline을 주입한 쥐들 간에는 몸무게, 체지방양(fat mass), 제지방량(lean body mass)의 변화는 없었다. 고인슐린혈증 정상혈당 글루코스 클램프(Hyperinsulinemic Euglycemic Glucose Clam) 동안, BNP를 주입한 고지방 식이 쥐들은 saline을 주입한 고지방식이 쥐에 비해 혈당(blood glucose)은 감소하였으며, 포도당 주입 속도(glucose infusion rate)는 증가하였다. 또한 BNP은 포도당 신생 및 중성지방 합성 관련 유전자들의 발현을 감소시켜, 간에서 포도당 생성과 중성지방의 양을 감소시켰다. BNP는 saline을 주입한 쥐에 비해 간 조직에서 Akt와 AMP-activated protein kinase (AMPK)의 인산화를 증가시켰는데, 이는 BNP을 처리한 AML12 간세포에서도 BNP는Akt와 AMPK 인산화를 증가시켰다. 이상의 결과는 BNP가 간에서 인슐린 저항성을 개선하여 포도당 생성과 중성 지방 생성을 억제함을 알 수 있었다.

Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide

  • Karami, Hadi;Baradaran, Behzad;Esfehani, Ali;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.629-635
    • /
    • 2014
  • Background: Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. Materials and Methods: siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Results: Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time-dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Conclusions: Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

Tax is Involved in Up-regulation of HMGB1 Expression Levels by Interaction with C/EBP

  • Zhang, Chen-Guang;Wang, Hui;Niu, Zhi-Guo;Zhang, Jing-Jing;Yin, Ming-Mei;Gao, Zhi-Tao;Hu, Li-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.359-365
    • /
    • 2013
  • The high mobility group box 1 (HMGB1) protein is a multifunctional cytokine-like molecule that plays an important role in the pathogenesis of tumors. In this study, real-time polymerase chain reactions and Western blot assays indicated that HMGB1 transcriptional activity and protein level are increased in $Tax^+$-T cells (TaxP). To clarify the mechanisms, a series of HMGB1 deletion reporter plasmids (pHLuc1 to pHLuc6) were transfected into $Tax^-$-T cells (TaxN, Jurkat) and $Tax^+$-T cells (TaxP). We found that promoter activity in $Tax^+$-T cells to be higher than that in $Tax^-$-T cells, indicating a significant increase in pHLuc6. Bay11-7082 (NF-${\kappa}B$ inhibitor) treatment did not block the enhancing effect. Chromatin immunoprecipitation assays revealed that Tax was retained on a HMGB1 promoter fragment encompassing -1163 to -975. Bioinformatics analysis showed six characteristic cis-elements for CdxA, AP-1, AML-1a, USF, v-Myb, and C/EBP in the fragment in question. Mutation of cis-elements for C/EBP reduced significant HMGB1 promoter activity induced by Tax. These findings indicate that Tax enhances the expression of HMGB1 gene at the transcriptional level, possibly by interacting with C/EBP.

Impact of Global and Gene-Specific DNA Methylation in de Novo or Relapsed Acute Myeloid Leukemia Patients Treated with Decitabine

  • Zhang, Li-Ying;Yuan, You-Qing;Zhou, Dong-Ming;Wang, Zi-Yan;Ju, Song-Guang;Sun, Yu;Li, Jun;Fu, Jin-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.431-437
    • /
    • 2016
  • In this investigation, global DNA methylation patterns and the specific methylation status of 5 genes were studied in DNA from peripheral blood (PB) and impact on progression free survival (PFS) and overall-survival (OS) in patients with de novo or relapsed acute myeloid leukemia (AML) treated with decitabine-based regimens waas assessed. DNA was isolated from PB samples at the time of -1, 1, and 7 days of chemotherapy. Global methylation was determined by ELISA, and the CpG island DNA methylation profile of 5 genes using a DNA methylation PCR system. Our data demonstrated that patients with a high level of 5-mC had a poor prognosis after demethylation therapy and those who have low levels of 5-mC in PB achieved higher CR and better SO, but there was no significant correlation found between the 5-mC levels and other clinical features before treatment except the disease status. Higher methylation status of Sox2 and Oct4 genes was associated with differential response to demethylation therapy. A relatively low methylation percentage in one or both of these two genes was also associated with longer OS after decitabine based chemotherapy. We also suggest that global DNA and Oct-4/Sox2 methylation might impact on the pathogenesis of leukemia and play an important role in the initiation and progression. Moreover, dynamic analysis of 5-mC and Oct-4/Sox2 in peripheral blood nucleated cells of leukemia patients may provide clues to important molecular diagnostic and prognostic targets.