• Title/Summary/Keyword: Textureless Object

Search Result 5, Processing Time 0.018 seconds

Combining an Edge-Based Method and a Direct Method for Robust 3D Object Tracking

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • In the field of augmented reality, edge-based methods have been popularly used in tracking textureless 3D objects. However, edge-based methods are inherently vulnerable to cluttered backgrounds. Another way to track textureless or poorly-textured 3D objects is to directly align image intensity of 3D object between consecutive frames. Although the direct methods enable more reliable and stable tracking compared to using local features such as edges, they are more sensitive to occlusion and less accurate than the edge-based methods. Therefore, we propose a method that combines an edge-based method and a direct method to leverage the advantages from each approach. Experimental results show that the proposed method is much robust to both fast camera (or object) movements and occlusion while still working in real time at a frame rate of 18 Hz. The tracking success rate and tracking accuracy were improved by up to 84% and 1.4 pixels, respectively, compared to using the edge-based method or the direct method solely.

Foreground Segmentation and High-Resolution Depth Map Generation Using a Time-of-Flight Depth Camera (깊이 카메라를 이용한 객체 분리 및 고해상도 깊이 맵 생성 방법)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.751-756
    • /
    • 2012
  • In this paper, we propose a foreground extraction and depth map generation method using a time-of-flight (TOF) depth camera. Although, the TOF depth camera captures the scene's depth information in real-time, it has a built-in noise and distortion. Therefore, we perform several preprocessing steps such as image enhancement, segmentation, and 3D warping, and then use the TOF depth data to generate the depth-discontinuity regions. Then, we extract the foreground object and generate the depth map as of the color image. The experimental results show that the proposed method efficiently generates the depth map even for the object boundary and textureless regions.

Disparity Estimation for Intermediate View Reconstruction of Multi-view Video (다시점 동영상의 중간시점영상 생성을 위한 변이 예측 기법)

  • Choi, Mi-Nam;Yun, Jung-Hwan;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.915-929
    • /
    • 2008
  • In this paper, we propose an algorithm for pixel-based disparity estimation with reliability in the multi-view image. The proposed method estimates an initial disparity map using edge information of an image, and the initial disparity map is used for reducing the search range to estimate the disparity efficiently. Furthermore, disparity-mismatch on object boundaries and textureless-regions get reduced by adaptive block size. We generated intermediate-view images to evaluate the estimated disparity. Test results show that the proposed algorithm obtained $0.1{\sim}1.2dB$ enhanced PSNR(peak signal to noise ratio) compared to conventional block-based and pixel-based disparity estimation methods.

Performance Improvement of Stereo Matching by Image Segmentation based on Color and Multi-threshold (컬러와 다중 임계값 기반 영상 분할 기법을 통한 스테레오 매칭의 성능 향상)

  • Kim, Eun Kyeong;Cho, Hyunhak;Jang, Eunseok;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • This paper proposed the method to improve performance of a pixel, which has low accuracy, by applying image segmentation methods based on color and multi-threshold of brightness. Stereo matching is the process to find the corresponding point on the right image with the point on the left image. For this process, distance(depth) information in stereo images is calculated. However, in the case of a region which has textureless, stereo matching has low accuracy and bad pixels occur on the disparity map. In the proposed method, the relationship between adjacent pixels is considered for compensating bad pixels. Generally, the object has similar color and brightness. Therefore, by considering the relationship between regions based on segmented regions by means of color and multi-threshold of brightness respectively, the region which is considered as parts of same object is re-segmented. According to relationship information of segmented sets of pixels, bad pixels in the disparity map are compensated efficiently. By applying the proposed method, the results show a decrease of nearly 28% in the number of bad pixels of the image applied the method which is established.

Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation (고품질 해빙표면모델 생성을 위한 정합비용함수의 성능 비교 분석)

  • Kim, Jae-In;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1251-1260
    • /
    • 2018
  • High-quality sea-ice surface models generated from aerial images can be used effectively as field data for developing satellite-based remote sensing methods but also as analysis data for understanding geometric variations of Arctic sea-ice. However, the lack of texture information on sea-ice surfaces can reduce the accuracy of image matching. In this paper, we analyze the performance of matching cost functions for homogeneous sea-ice surfaces as a part of high-quality sea-ice surface model generation. The matching cost functions include sum of squared differences (SSD), normalized cross-correlation (NCC), and zero-mean normalized cross-correlation (ZNCC) in image domain and phase correlation (PC), orientation correlation (OC), and gradient correlation (GC) in frequency domain. In order to analyze the matching performance for texture changes clearly and objectively, a new evaluation methodology based on the principle of object-space matching technique was introduced. Experimental results showed that it is possible to secure reliability and accuracy of image matching only when optimal search windows are variably applied to each matching point in textureless regions such as sea-ice surfaces. Among the matching cost functions, NCC and ZNCC showed the best performance for texture changes.