The depositional environment of the Manhang and the Geumcheon Formation of the Pennsylvanian Gomog Croup is revealed to the shallow neritic marine milieu in this paper also as the results of Park (1963), Cheong(1975) and Kim (1976), through the analyses of stratigraphy, paleocurrent, properties of cross-beddings and sedimentational features. The formations contains some possible terrestrial sediments suggesting the paralic environment, which are however not recognized definitely within them. The paleocurrent analysis is made to the Manhang Formation only. The paleocurrent of the formation is known to belong to the shallow neritic longshore current. The paleocurrent analysis is based chiefly on the cross-bedding analysis, and subordinately on the texture of elastic coarse sediments. The paleocurrent mean is determined to $269^{\circ}$, that is, from east to west, of which direction is interpreted to the right angle to the slope of the basinal depository plane and also the parallel with die depositional strike, according to Klein (1960) and Selley's (1968) criteria. The variance value of paleocurrent directions of the Manhang Formation in the whole area studied is 6,374, and the values range from 3,394 to 6,957 according to the dirstricts. The paleocurreut pattern of the whole area shows polymodel, and the patterns in each district range from trimodel to quadrimodel. Those models approach to the shallow marine or paralic model of Tohill and Picard (1966), Picard and High (1968 a), Pisnak (1957) and Pettijohn (1962). The mean value of maximum inclinations of cross-beddings of the whole area is $19.9^{\circ}$ with the standard deviation of 8.4, and ranges from $15.6^{\circ}$ to $21.7^{\circ}$ in the districts. Comparing the histogram showing the frequency distribution of the maximum inclinations of cross-beddings of the Manhang Formation with the Pettijohn's (1962) histogram, it is found that the model approaches to his marine model. The Pennsylvanian Gomog Group of the coalfield is considered to have had been deposited in the pseudogeosynclinal zone on the plateau by the transgression of the Tethyan sea caused by the epirogenic movements during the Pennsylvanian Period.
일반적으로 이진패턴 변환은 조명 변화에 강인한 특성을 가지므로, 얼굴인식 및 표정인식 분야에 널리 사용되고 있다. 이에, 본 논문에서는 기존의 LDP(Local Directional Pattern)의 텍스처 성분을 개선한 MLDP(Modified LDP) 변환 영상에 2D-PCA(Two-Dimensional Principal Component Analysis) 알고리즘을 결합한 조명변화에 강인한 얼굴인식 방법에 대하여 제안한다. 기존의 LBP(Local Binary Pattern)나 LDP와 같은 이진패턴 변환들이 히스토그램 특징 추출을 위해 주로 사용되는 것과는 다르게, 본 논문에서 제안하는 방법은 MLDP 영상을 2D-PCA 특징추출을 위해 직접 사용한다는 특성을 갖는다. 제안 방법의 성능평가는 PCA(Principal Component Analysis), 2D-PCA 및 가버변환 영상과 LBP를 결합한 알고리즘을 사용하여, 다양한 조명변화 환경에서 구축된 Yale B 및 CMU-PIE 데이터베이스를 이용하여 수행되었다. 실험 결과, MLDP 영상과 2D-PCA를 사용한 제안 방법이 가장 우수한 인식 성능을 보임을 확인하였다.
지형지물은 각각의 특징적 요인을 내포하고 있다. 이 특징적 요인들은, 공간해상도에 따라 정도의 차이가 있겠지만, 수집된 위성영상에도 반영된다. 이러한 요인들 중에서는 영상분류에 활용될 경우 영상 분류의 정확도를 높혀주고, 때로는 이것이 거의 물체인식의 수준까지 기여할 수 있는 것들이 있다. 이 연구에서는 텍스춰 및 지형지물의 배열에 있어서 특징적 현상을 보이는 비닐하우스를 대상으로 spatial auto-corelation 개념을 기반으로 자동적으로 이를 인지하는 방법을 개발하였다. 사용된 알고리즘은 디지타이징과 같은 사람의 직접적인 개입이 없이 자동화된 방법으로 비닐하우스의 특정한 패턴이 반복적으로 나타나는 것을 감지할 수 있도록 개발되었다. 패틴의 인식에 더하여 비닐하우스의 기하학적 모양을 고려하는 방법도 도입하였다. 그럼으로써 비닐하우스의 추출에 단순히 화소 단위의 분석이 아닌 보다 객체지향적인 방법으로 비닐하우스를 추출하도록 하였다. 개발된 방법을 제주지역의 IKONOS에 적용시켜 본 결과 연구대상지역내의 비닐하우스가 매우 정확하게 적출되었다.
The purpose of this study was to understand the geographical and environmental distribution of animals and plants in Baekdudaegan region using field survey and GIS data. Crucial factors were selected and analyzed to understand the distributional characteristics of wild animals (16 species in 5 orders) and rare endemic plants (20 species in 12 orders). These crucial factors include stand factor (forest type, DBH class, and crown density), soil factor (bed rock, soil texture, and organic matter), geographical factor (elevation, slope, aspect) and climatic factor (temperature, rain fall, humidity). Finally, ten crucial factors were selected by statistical analysis and categorized for analyzing geographical and environmental features. Three orders such as Rodentia, Carnivora, and Artiodactula in wild animal showed the similar habitat characteristics with the small diameter and the elevation range from 801 to 1,000m. The Hydropotes inermis of Artiodactyla and Rattus norvegicus of Rodentia were different in the type of orders, but they had the similar habitat characteristics with the coniferous forest and loam. On the other hand, four orders such as Tubiflorales, Liliales, Ericales, and Rhamnales in the rare and endemic plants were showed high occurrence rate in the organic matter between 4 and 6%. The Rodgersia podophylla of Rosales and Gastrodia elata Blume of Microspermae were different in the type of orders, but they had the similar habitat characteristics with the stand factor and soil factor.
Objective: Tenderness is a very complex feature, and the process of its formation is very complicated and not fully understood. Its diversification is one of the most important problems of beef production, as a result beef aging is widely used to improve tenderness as it is believed to provide a homogeneous product to consumers. While few studies have evaluated the muscle structure properties in relation to tenderness from early post-mortem, there little to no information available on how the muscle nanostructure of beef carcasses changes during post-mortem ageing to determine the appropriate aging time for acceptable tenderness. Methods: Muscle nanostructure (myofibril diameter [MYD], myofibril spacing [MYS], muscle fibre diameter [MFD], muscle fibre spacing [MFS], and sarcomere length [SL]), meat tenderness and cooking loss [CL]) were measured on 20 A2 longissimus muscles of Bonsmara, Beefmaster, Hereford, and Simbra at 45mins, 1, 3, and 7 days post-slaughter. Muscle nanostructure was measured using a scanning electron microscope, while tenderness was measured using Warner Bratzler shear force. Results: At 45 minutes post-slaughter, breed affected MYD and MYS only, while at 24hrs it also affected MFD and MFS. On day 3 breed effected MFS and SL, while on day 7 breed effected tenderness only. As the muscles matured, both MYD and MYS decreased while CL increased, and the muscles became tender. There was no uniformity on muscle texture features (surface structure, fibre separation, muscle contraction, and relaxation) throughout the ageing period. Conclusion: Meat tenderness can be directly linked to breed related myofibril structure changes during aging in particular the MYD, spacing between myofibrils and their interaction; while the MFD, spacing between muscle fibres, SL, and CL explain the non-uniformity in beef tenderness.
내용기반 영상검색은 영상 내의 정보인 색상, 질감, 형태 등의 특징 값을 추출하여 검색에 이용한다. 본 논문에서는 $8{\times}8$ 이산여현변환, 즉 $8{\times}8$ DCT(Discrete Cosine Transform) 후 얻어지는 DC, AC계수를 이용하여 필터뱅크(filter-bank)를 생성하고, 이를 영상의 내용기반 검색에 이용하는 검색방법을 제안한다. 제안된 방법은 생성된 DCT 필터뱅크에서 DC성분과 주요한 AC성분인 AC01, AC10, AC11 만을 이용하며, DC성분에 대한 양자화를 수행하여 계산량을 최소화한다. 그리고 양자화된 DC성분에 대한 히스토그램 정보를 기반으로 영상 검색에 필요한 특징 값을 산출한다. AC성분에 대해서는 Otsu 이진화를 통하여 개괄적인 형태정보를 취득한 다음 이에 대한 수평/수직 방향으로의 투영 히스토그램을 계산하여 특징 값을 취득한다. 추출된 AC성분의 특징 값은 DC성분의 특징 값과 함께, 특징벡터 빈(feature vector bins)을 구성하여 검색을 수행한다. 실험은 1000장의 데이터베이스를 이용하여 수행 되었으며, 기존의 색상정보를 이용한 검색방법보다 우수한 성능을 보임을 확인하였다.
본 논문은 채널 강조(Channel Attentin)와 공간 강조(Spatial Attention) 방법을 결합한 딥 러닝 기반의 초해상도 방법을 제안하였다. 초해상도 과정에서 질감, 특징과 같은 주변 픽셀의 변화량이 큰 고주파 성분의 복원이 중요하다. 채널 강조와 공간 강조를 결합한 특징 강조를 이용한 초해상도 방법을 제안하였다. 기존의 CNN(Convolutional Neural Network) 기반의 초해상도 방법은 깊은 네트워크의 학습이 어려우며, 고주파 성분의 강조가 부족하여 윤곽선이 흐려지거나 왜곡이 발생한다. 문제를 해결하기 위해 스킵-커넥션(Skip Connection)을 적용한 채널 강조와 공간 강조를 결합한 강조 블록과 잔차 블록(Residual Block)을 사용하였다. 방법으로 추출한 강조된 특징 맵을 부-픽셀 컨볼루션(Sub-pixel Convolution)을 통해 특징맵을 확장하여 초해상도를 진행하였다. 이를 통해 기존의 SRCNN과 비교하여 약 PSNR는 5%, SSIM은 3% 향상되었으며 VDSR과 비교를 통해 약 PSNR는 2%, SSIM은 1% 향상된 결과를 보였다.
딥러닝(DL)을 이용한 객체인식, 탐지 및 분할하는 연구는 여러 분야에서 활용되고 있으며, 주로 영상을 DL 모델의 학습 데이터로 사용하고 있지만, 본 논문은 영상뿐 아니라 공간정보 특성을 포함하는 다양한 학습 데이터(multimodal training data)를 향상된 영역기반 합성곱 신경망(R-CNN)인 Detectron2 모델 학습에 사용하여 객체를 분할하고 건물을 탐지하는 것이 목적이다. 이를 위하여 적외선 항공영상과 라이다 데이터의 내재된 객체의 윤곽 및 통계적 질감정보인 Haralick feature와 같은 여러 특성을 추출하였다. DL 모델의 학습 성능은 데이터의 수량과 특성뿐 아니라 융합방법에 의해 좌우된다. 초기융합(early fusion)과 후기융합(late fusion)의 혼용방식인 하이브리드 융합(hybrid fusion)을 적용한 결과 33%의 건물을 추가적으로 탐지 할 수 있다. 이와 같은 실험 결과는 서로 다른 특성 데이터의 복합적 학습과 융합에 의한 상호보완적 효과를 입증하였다고 판단된다.
Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
한국정보기술학회논문지
/
제17권9호
/
pp.99-112
/
2019
도로 포장면의 크랙(crack)은 도로포장 구조의 열화를 입증하는 중요한 신호와 증상이다. 카메라 영상기반 도로포장 크랙 탐지는 강도 비균질성, 위상 복잡성, 낮은 대조도 및 노이즈성의 텍스처 배경 때문에 어려운 문제이다. 본 논문은 흑백영상에 대하여 깊은 신경망(DNN)에 기반하여 픽셀수준의 도로 크랙 탐지 및 분할 문제에 대해 다룬다. 변형된 U-net 네트워크와 고수준 특징 네트워크를 포함하는 새로운 DNN 구조를 제안한다. 본 연구의 중요 기여는 융합 층을 통해 공급되는 이들 네트워크의 결합 방법이다. 우리가 아는 한, 본 연구는 보도블럭 크랙 분할 및 탐지 문제를 결합을 소개한 최초의 논문이다. 크랙 탐지 및 분할의 시스템 성능은 새로운 구조를 사용하여 급격히 향상되었다. 제안된 시스템을 2개의 공개 데이터셋크랙 포레스트 데이터셋(CFD)와 AigleRN 데이터셋에 대하여 구현하고 평가하였다. 본 논문의 시스템은 여덟 가지의 최신 알고리즘과 같은 데이터셋으로 실험을 하였을 때, 가장 뛰어난 결과를 보여주었다.
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.77-90
/
2023
Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.