• Title/Summary/Keyword: Texture feature

Search Result 437, Processing Time 0.031 seconds

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

Performance Analysis of Brightness-Combined LLAH (밝기 정보를 결합한 LLAH의 성능 분석)

  • Park, Hanhoon;Moon, Kwang-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • LLAH(Locally Likely Arrangement Hashing) is a method which describes image features by exploiting the geometric relationship between their neighbors. Inherently, it is more robust to large view change and poor scene texture than conventional texture-based feature description methods. However, LLAH strongly requires that image features should be detected with high repeatability. The problem is that such requirement is difficult to satisfy in real applications. To alleviate the problem, this paper proposes a method that improves the matching rate of LLAH by exploiting together the brightness of features. Then, it is verified that the matching rate is increased by about 5% in experiments with synthetic images in the presence of Gaussian noise.

A Synthetic Method for Generating Texture Patterns Similar to a Selected Original Texture Image

  • Shinji, Ohyama;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.5-35
    • /
    • 2001
  • The purpose of the study is to develop a synthetic method for generating arbitrary number of not the same but similar texture images. The method includes processes to extract basic shape elements from texture images originating in actual objects, to select them to reappear the image features and to arrange them in a image plane. The authors have already proposed the shape-pass type filter bank assuming that the sensual impression mainly depends on minute shapes existing in the texture images. By use of nine basic shape elements, namely black/white-roof, black/white-line, black/white-snake, black/white-pepper, and cliff, natural texture images originating in actual objects have been characterized by feature vectors in a nine dimensional space. To generate arbitrary number of similar texture images, minute shape pieces ...

  • PDF

Texture Images Segmentation by Combination of Moment & Homogeneity Features (모멘트와 동차성 특징 결합에 의한 텍스쳐 영상 분할)

  • Mo, Moon-Jung;Lim, Jong-Seok;Lee, Woo-Beom;Kim, Wook-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3592-3602
    • /
    • 2000
  • Image processing consist of image analysis and classification. The one is extracting of feature value in the image. The other is segimentationof image that have same properiv. A novel approach for the analysis and classification of tezture images based on statistical texture prunitive estraction are proposed. In this approach, feature vector extracting is based on stalisucal method using apatial dependence of grey level and use general lexture proerty. In is advantageous that not effiected on structure and type of lexture. These components describe the amount of roughness and softness of texture images Two leatures. Moment and Homogeneity, are componted from GLCM(gray level co-occurrence matrices) of the lexture promitive to charactenize statisical properties of the image. We show the successful experimental results by considerationof these two components fro the analysis and classificationto regular and irregular texture images.

  • PDF

Multitexture Image Segmentation Using Amplitude Demodulation (진폭복조를 이용한 복합텍스쳐영상의 분할)

  • Lee, Hyun-Soo
    • Journal of IKEEE
    • /
    • v.5 no.2 s.9
    • /
    • pp.211-220
    • /
    • 2001
  • This paper proposes a 2-D texture segmentation algorithm which is in close analogy to amplitude demodulation in communication systems. First, we show that it is theoretically possible to segment a multitexture image using an ideal filter followed by an amplitude demodulation block. However, in practice, the Gabor filter is used instead of the ideal filter because it has many desirable properties and especially it gives optimum space-bandwidth product. Our algorithm recovers all the texture regions containing the sinusoid with frequency to which the Gabor filter is tuned. We have demonstrated the discriminating power of our method in using a synthetic multitexture image. It is clear mathematically and easy to implement. Our method can be a good alternative to avoid many problems encountered in classifying the feature vectors in feature-based texture segmentation approaches.

  • PDF

Automated Prostate Cancer Detection on Multi-parametric MR imaging via Texture Analysis (다중 파라메터 MR 영상에서 텍스처 분석을 통한 자동 전립선암 검출)

  • Kim, YoungGi;Jung, Julip;Hong, Helen;Hwang, Sung Il
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.736-746
    • /
    • 2016
  • In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.

A New Method for Classification of Structural Textures

  • Lee, Bongkyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.125-133
    • /
    • 2004
  • In this paper, we present a new method that combines the characteristics of edge in-formation and second-order neural networks for the classification of structural textures. The edges of a texture are extracted using an edge detection approach. From this edge information, classification features called second-order features are obtained. These features are fed into a second-order neural network for training and subsequent classification. It will be shown that the main disadvantage of using structural methods in texture classifications, namely, the difficulty of the extraction of texels, is overcome by the proposed method.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

MPEG-7 Homogeneous Texture Descriptor

  • Ro, Yong-Man;Kim, Mun-Churl;Kang, Ho-Kyung;Manjunath, B.S.;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.23 no.2
    • /
    • pp.41-51
    • /
    • 2001
  • MPEG-7 standardization work has started with the aims of providing fundamental tools for describing multimedia contents. MPEG-7 defines the syntax and semantics of descriptors and description schemes so that they may be used as fundamental tools for multimedia content description. In this paper, we introduce a texture based image description and retrieval method, which is adopted as the homogeneous texture descriptor in the visual part of the MPEG-7 final committee draft. The current MPEG-7 homogeneous texture descriptor consists of the mean, the standard deviation value of an image, energy, and energy deviation values of Fourier transform of the image. These are extracted from partitioned frequency channels based on the human visual system (HVS). For reliable extraction of the texture descriptor, Radon transformation is employed. This is suitable for HVS behavior. We also introduce various matching methods; for example, intensity-invariant, rotation-invariant and/or scale-invariant matching. This technique retrieves relevant texture images when the user gives a querying texture image. In order to show the promising performance of the texture descriptor, we take the experimental results with the MPEG-7 test sets. Experimental results show that the MPEG-7 texture descriptor gives an efficient and effective retrieval rate. Furthermore, it gives fast feature extraction time for constructing the texture descriptor.

  • PDF

The Innovative Application of Surface Texture in Fashion and Textile Design

  • Gong, Lin;Shin, Jooyoung
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.336-346
    • /
    • 2013
  • This study focuses on 'texture' as one of the most important fashion and textile design elements; in addition, it proposes various applications of it. Surface texture is indispensable in fashion and textile design that also factors heavily into innovative creations. Along with technological advances in the fashion industry, surface texture has derived many new and attractive features that provide more opportunities for designers to show various design concepts. Rather than the surface quality of fabrics, surface texture in fashion design creates its identity through a manipulation of materials- an application that tends to be primarily for visual effects without being restricted to decorative purposes. The status and significance of surface texture in various creative fields is explored and the evolution of surface texture is traced by analyzing a number of fashion design cases with representative surface textures. The latest feature of surface texture in fashion and textile design is identified to establish a new classification of surface texture with five groups and technical suggestions. This study provides a theoretical basis for this field of study and a new framework that can be employed in the development of surface textures that use innovative techniques as well as the future application of newly-developed textures.