3차원 텍스춰 매핑은 얇은 종이를 부자연스럽게 물체에 붙이는 것과는 달리 마치 원래의 재료로부터 조각을 한 것과 같은 매우 자연스러운 시각적 효과를 내는 장점이 있다. 하지만 빠른 텍스춰 매핑을 위하여 샘플링을 통하여 생성한 3차원 텍스춰를 실시간 계산을 위하여 메모리에 올리는 것은 일반적으로 텍스춰의 방대한 크기 때문에 실용적이지 못하다. 최근 [11]에서는 실용적인 실시간 3차원 텍스춰 매핑 기법을 제안하였는데 여기서는 웨이블릿에 기반한 압축 기법을 사용하여 메모리 문제를 해결하려 하였다. 이 논문에서는 이러한 압축 기반 실시간 3D 텍스춰 매핑에 사용될 수 있는 또 다른 압축 기법에 대하여 살펴보았다. 특히 벡터양자화 방법과 FXT1 방법을 3차원 텍스춰 압축에 적합하도록 확장을 하고 그 성능을 비교 분석을 하였다.
본 논문은 공간 부호화 패턴들을 이용하여 3차원 얼굴 정보를 정확하게 측정하기 위하여 초기 얼굴 패턴 영상으로부터 이미지 패턴을 검출하기 위한 새로운 알고리즘을 제안한다. 획득된 영상이 불균일하거나 패턴의 경계가 명확하지 않으면 패턴을 분할하기가 어렵다. 그리고 누적된 오류로 인하여 코드화가 되지 않는 영역이 발생한다. 본 논문에서는 이러한 요인에 강하고 코드화가 잘 될 수 있도록 FCM 클러스터링 방법을 이용하였다. 패턴 분할을 위하여 클러스터는 2개, 최대 반복횟수는 100, 임계값은 0.00001로 설정하여 실험하였다. 제안된 패턴 분할 방법은 기존 방법들(Otsu, uniform error, standard deviation, Rioter and Calvard, minimum error, Lloyd)에 비해 8-20%의 분할 효율을 향상시켰다.
The 3D-AVC standard aims at improving coding efficiency by applying new techniques for utilizing intra, inter and view predictions. 3D video scenes are rendered with existing texture video and additional depth map. The depth map comes at the expense of increased computational complexity of the encoding process. For real-time applications, reducing the complexity of 3D-AVC is very important. In this paper, we present a fast intra mode decision algorithm to reduce the complexity burden in the 3D video system. The proposed algorithm uses similarity between texture video and depth map. The best intra prediction mode of the depth map is similar to that of the corresponding texture video. The early decision algorithm can be made on the intra prediction of depth map coding by using the coded intra mode of texture video. Adaptive threshold for early termination is also proposed. Experimental results show that the proposed algorithm saves the encoding time on average 29.7% without any significant loss in terms of the bit rate or PSNR value.
Although frame-based MPEG-4 video services have been successfully deployed since 2000, MPEG-4 video coding is now facing great competition in becoming a dominant player in the market. Object-based coding is one of the key functionalities of MPEG-4 video coding. Real-time object-based video encoding is also important for multimedia broadcasting for the near future. Object-based video services using MPEG-4 have not yet made a successful debut due to several reasons. One of the critical problems is the coding complexity of object-based video coding over frame-based video coding. Since a video object is described with an arbitrary shape, the bitstream contains not only motion and texture data but also shape data. This has introduced additional complexity to the decoder side as well as to the encoder side. In this paper, we have analyzed the current MPEG-4 video encoding tools and proposed efficient coding technologies that reduce the complexity of the encoder. Using the proposed coding schemes, we have obtained a 56 percent reduction in shape-coding complexity over the MPEG-4 video reference software (Microsoft version, 2000 edition).
지역 패턴을 정확하게 부호화 하는 방법은 텍스처 분류 연구에 매우 중요한 요소다. 하지만 기존 널리 연구된 LBP기반 방법들은 잡음에 취약한 근본적인 문제점이 있다. 최근 표정인식 분야에서 에지반응 값과 방향 정보를 활용한 LDP방법이 제안되었다. LDP방법은 LBP보다 잡음에 강하고 더 많은 정보를 코드에 수용할 수 있는 장점이 있지만 텍스처 분류에 적용하기에는 치명적인 회전 변화에 민감한 단점이 있다. 본 논문에서는 LDP 방법에 회전 불변 특성을 결합하고 기존 LDP가 가지고 있던 부호 정보를 수용하지 않은 단점과 밝기 값 차이가 적은 영역에서 의미 없는 코드가 생성되는 단점을 극복한 새로운 지역 패턴 부호화 방법인 Rotation Invariant Local Directional Pattern 방법을 제안한다. 본 논문에서 제안된 방법의 텍스처 분류 성능을 입증하기 위해 널리 사용되는 UIUC, CUReT 데이터 셋에서 텍스처 분류를 수행했다. 그 결과 제안된 RILDP방법이 기존 방법보다 우수한 성능을 보여주었다.
ASTC는 OpenGL ES 3.2 및 Vulkan 1.0 이상의 버전에서 지원하는 표준 텍스쳐 포맷 중 하나로, 모바일 플랫폼(Android 및 iOS)에서 지속적으로 사용이 증가해 왔다. ASTC의 가장 큰 특징은 블록 크기 설정으로, 이를 통해 품질과 압축률 간의 트레이드 오프를 조절할 수 있다. 하지만 텍스쳐의 개수가 많을 경우 텍스쳐별 최적의 블록 크기를 일일히 수작업으로 설정하는 것은 많은 시간과 노고를 야기하게 된다. 이러한 문제점을 해결하기 위해 본 논문은 PSNR 값을 기반으로 자동으로 ASTC 블록 크기를 결정하는 새로운 방법을 제안한다. 모든 블록 크기에 대해 압축을 수행한 후 PSNR값을 비교하는 brute-force 방식은 최고 14배까지 압축 시간을 증가시킬 수 있는 반면, 본 논문의 방법은 압축 과정을 3단계로 나누어 이러한 압축 시간 증가를 최소화한다. 다양한 형태의 64개 이미지로 구성된 텍스쳐 셋을 통해 실험한 결과, 제안하는 방법은 텍스쳐별로 4×4 에서 12×12까지 다양한 블록 크기를 결정하였으며, 블록 크기를 6×6으로 일괄적으로 정한 경우에 비해 압축된 파일들의 총 크기가 68% 감소하였다.
In this paper, we introduce a technique for 360-degree panoramic video streaming with multiple virtual cameras in real-time. The proposed technique consists of generating 360-degree panoramic video data by ORB feature point detection, texture transformation, panoramic video data compression, and RTSP-based video streaming transmission. Especially, the generating process of 360-degree panoramic video data and texture transformation are accelerated by CUDA for complex processing such as camera calibration, stitching, blending, encoding. Our experiment evaluated the frames per second (fps) of the transmitted 360-degree panoramic video. Experimental results verified that our technique takes at least 30fps at 4K output resolution, which indicates that it can both generates and transmits 360-degree panoramic video data in real time.
In this paper, a block based image approximation technique using the Self Affine System(SAS) from the fractal theory is suggested. Each block of an image is divided into 4 tiles and 4 affine mapping coefficients are found for each tile. To find the affine mapping cefficients that minimize the error between the affine transformed image block and the reconstructed image block, the matrix euation is solved by setting each partial differential coefficients to aero. And to ensure the convergence of coding block. 4 uniformly partitioned affine transformation is applied. Variable block size technique is employed in order to applynatural image reconstruction property of fractal image coding. Large blocks are used for encoding smooth backgrounds to yield high compression efficiency and texture and edge blocks are divided into smaller blocks to preserve the block detail. Affine mapping coefficinets are found for each block having 16$\times$16, 8$\times$8 or 4$\times$4 size. Each block is classified as shade, texture or edge. Average gray level is transmitted for shade bolcks, and coefficients are found for texture and edge blocks. Coefficients are quantized and only 16 bytes per block are transmitted. Using the proposed algorithm, the computational load increases linearly in proportion to image size. PSNR of 31.58dB is obtained as the result using 512$\times$512, 8 bits per pixel Lena image.
본 논문에서는 텍스쳐 추출시 제한된 수의 참여 영상을 이용한 multi-view 영상으로부터 가장 좋은 텍스쳐를 추출하는 효과적인 알고리듬을 제안하였다. 기존의 알고리듬이 정규화된 물체 공간에서 X-Y 평면을 삼각패치로 나누고 아휜 변환에 기반한 변이 보상 모델을 이용하여 삼각패치의 텍스쳐를 추출하였다. 본 논문에서는 기존의 방법과 달리 텍스쳐 추출시 참여 영상의 수를 제한하여 multi-view 영상으로부터 가장 좋은 텍스쳐를 추출하였다. Dragon, santa, city 그리고 kid의 multi-view 영상세트에 대해 실험한 결과 제안된 알고리듬으로 텍스쳐를 추출한후 이로부터 복원된 영상의 신호 대 잡음비(SNR)는 기존의 알고리듬으로 처리된 후 복원된 영상의 신호 대 잡음비보다 평균 0.2dB 정도 개선된 결과를 얻을 수 있었다. 제안된 방법으로 부호화된 데이터로부터 복원된 영상은 기존의 방법으로 부호화된 데이터로부터 복원된 영상보다 영상의 화질이 개선됨을 관찰할 수 있었다.
Chen, Fen;Liu, Sheng;Peng, Zongju;Hu, Qingqing;Jiang, Gangyi;Yu, Mei
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권4호
/
pp.1730-1747
/
2018
Multi-view video plus depth (MVD) is a mainstream format of 3D scene representation in free viewpoint video systems. The advanced 3D extension of the high efficiency video coding (3D-HEVC) standard introduces new prediction tools to improve the coding performance of depth video. However, the depth video in 3D-HEVC is time consuming. To reduce the complexity of the depth video inter coding, we propose a fast coding unit (CU) size and mode decision algorithm. First, an off-line trained Bayesian model is built which the feature vector contains the depth levels of the corresponding spatial, temporal, and inter-component (texture-depth) neighboring largest CUs (LCUs). Then, the model is used to predict the depth level of the current LCU, and terminate the CU recursive splitting process. Finally, the CU mode search process is early terminated by making use of the mode correlation of spatial, inter-component (texture-depth), and inter-view neighboring CUs. Compared to the 3D-HEVC reference software HTM-10.0, the proposed algorithm reduces the encoding time of depth video and the total encoding time by 65.03% and 41.04% on average, respectively, with negligible quality degradation of the synthesized virtual view.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.