• Title/Summary/Keyword: Texture development

Search Result 979, Processing Time 0.034 seconds

Prediction of Rolling Texture Evaolution in FCC Polycrystalline Metals Using Finite Element Method of Crystal Plasticity (결정소성 유한요소법을 이용한 FCC 다결정 금속의 압연 집합조직 예측)

  • 박성준;조재형;한흥남;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.313-319
    • /
    • 1999
  • The development of deformation texture in FCC polycystalline metals during rolling was simulated by the finite element analysis using a large-deformation, elaatic-plastic, rate-dependent polycrystalline model of crystal plasticity. Different plastic anisotropy due to different orientation of each crystal makes inhomogeneous deformation. Assuming plane strain compression condition, the simulation with a high rate sensitivity resulted in main component change from Dillamore at low rate sensitivity to Brass component.

  • PDF

Effect of Strain Rate on Microstructure Formation Behaviors of AZ80 Magnesium Alloy During High-temperature Deformation (고온변형 중의 AZ80 마그네슘 합금의 미세조직 형성 거동에 미치는 변형속도의 영향)

  • Park, Minsoo;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.180-184
    • /
    • 2020
  • The crystallographic texture plays an important role in both the plastic deformation and the macroscopic anisotropy of magnesium alloys. In previous study for AZ80 magnesium alloy, it was found that the main texture components of the textures vary with the deformation conditions at high temperatures. Also, the basal texture was formed at stress of more than 15-20 MPa and the non-basal texture was formed at stress of less than 15-20 MPa. Therefore, in this study, uniaxial compression deformation of AZ80 magnesium alloy was carried out at high temperature (stress of 15-20 MPa). The uniaxial compression deformation is performed at temperature of 723 K and strain rate 3.0 × 10-3s-1, with a strain range of between -0.4 and -1.3. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. EBSD measurement was also conducted in order to observe spatial distribution of orientation. As a result of high temperature deformation, the main component of texture and its development vary depending on deformation condition of this study.

Effect of Initial Orientation and Austenitic Phase on Texture Evolution in Ferritic Stainless Steels (페라이트계 스테인레스강의 집합조직 형성에 미치는 초기 방위 및 오스테나이트사의 영향)

  • 이용득
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.149-152
    • /
    • 1999
  • The effect of initial orientation on the microstructure and texture evolution of two ferritic stainless steels was investigated. the columnar and equiaxed crystal specimens which were prepared from continuous casting slab were hot rolled annealed cold rolled and annealed respectively. The rolling and recrystallization textures at each process stage were examined by orientation distribution function (ODF) and electron back-scattered diffraction (EBSD); The observation showed that the orientation density of the $\alpha$-fibre of hot rolled band of columnar crystal specimen was more pronounced than that of the equaxed one at the center layer. Nevertheless the cold rolled textures of Type 430 steel have demonstrated a rather similar development . Compared to Type 430 steel the development of the $\alpha$-fibre in the center layer of Type 409L steel was much more pronounced. The relation between texture evolution and ridging behaviour has been discussed.

  • PDF

Understanding of Development of Cheese Texture during Ripening (치즈의 숙성과정중 치즈조직의 변화연구)

  • Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.57-60
    • /
    • 2008
  • During cheese ripening, the textural properties of cheese undergo significant changes from short, grainy, irregular to smooth, homogeneous and connected (well-net) structure. To make this change, many biochemical reactions occur during ripening and there have been tremendous researches in this topic for decades. In this review, several key parameters, such as cheese composition (especially cheese moisture and cheese pH), proteolytic activity and changes in Ca equilibrium will be discussed to understand the development of cheese texture during ripening.

  • PDF

Fabrication of textured Ni substrates for coated conductor prepared by powder metallurgy and plasma arc melting method (분말법과 주조법으로 제조한 coated conductor용 Ni 기판 개발)

  • 임준형;김정호;김규태;장석헌;주진호;나완수;홍계원;지봉기;김찬중
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.70-74
    • /
    • 2003
  • We fabricated cube textured Ni substrate for YBCO coated conductor and evaluated the effects of processing parameters on microstructural evolution and texture formation. Ni-rods as an initial specimen were prepared by two different methods, i.e., powder metallurgy(PM) and plasma arc melting(PAM). Subsequently, the rods were cold rolled to 100 $\mu\textrm{m}$ thick substrate and annealed at temperatures of $700∼1200^{\circ}C$. The texture of the substrate was characterized by pole-figure. It was observed that the texture of substrate made by P/M did not significantly varied with annealing temperature of 600∼$l100^{\circ}C$ and the full-width at half-maximums (FWHM) of both in-plane and out-of-plane were 9$^{\circ}$$10^{\circ}$. On the other hand, the texture of substrate made by PAM was more dependent on the annealing temperature and the corresponding values were $9^{\circ}$$13^{\circ}$ at the temperature range. In addition, recrystallization twin texture, (221)<221>, was formed as the temperature increased further. OM profiles showed that the grain size of substrate made by P/M was smaller than that made by PAM and this difference was correlated to the microstructure of initial specimens.

  • PDF

A Study on the Effects of Costume Styling, Color and Texture on Character Expression in Movies - Focusing on the Movie and - (영화에서 의상의 스타일링, 색채, 재질감이 캐릭터 표현에 미치는 영향에 대한 연구 -영화 <내 아내의 모든것>, <결혼전야>를 중심으로-)

  • Kim, Sojin
    • Journal of Fashion Business
    • /
    • v.23 no.4
    • /
    • pp.53-67
    • /
    • 2019
  • This study investigated the effects of costume styling, color and texture on character expression in the movies "All About My Wife" and "Marriage Blue". As a study method, the main scenes were captured from the DVD image and the costumes of the main characters were analyzed to examine how the costumes express the personality change according to the story development of the characters. The characters in "All About My Wife" and "Marriage Blue" were studied to see how their personality changes as the story develops and how the costume supports the personality change of those characters. It was checked that costume contributes to effectively deliver the emotion of the characters to audience. In the movies, costume plays an important role in completing the character, and styling, color, and texture of the costume are one of the important means of expression. In a movie, costumes, styling, color, and texture contribute towards development of each character's character. And these elements act synergistically by acting simultaneously rather than independently, thus defining the image of the costume and playing a role in building characters. Movie directors persuade the audience by expressing their intentions in various ways. Among them, movie costume is one of the most effective expression tools. The styling, color, and texture of the clothes are practical and effective methodology that will create a character, so I hope that the field of film art will be researched extensively in the future.

Texture and Mechanical Properties of Ni-W Alloy Tapes Fabricated from Powder Mother Billets (분말 모합금 빌렛으로부터 제조된 Ni-W 합금테이프의 기계적 성질과 집합도)

  • Kim, Min-Woo;Jun, Byung-Hyuk;Ji, Bong-Ki;Jung, Kyu-Dong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.13-18
    • /
    • 2007
  • The mother Ni-W (1-5 wt.%) alloy billets for coated conductor substrate were fabricated by powder metallurgy process. The tensile test results for the sintered Ni-W rods showed the increase of mechanical strength and decrease of ductility with increasing W content due to the solid solution hardening. All the fracture surfaces of the tested specimens showed the typical ductile fracture mode of dimple rupture due to the local necking. The Ni-W alloy billets were made into tape by cold rolling. After the appropriate heat treatment for recrystallization, the brass texture formed by the cold rolling was converted to the complete cube texture. The in-plane and out of plane texture of the tapes estimated by x-ray pole figure were smaller than 9 degree and 7 degree, respectively. The effect of the W addition on the texture development seems not to be significant.

Influence of Texture on the Tensile Properties in AZ31 Magnesium Alloy (AZ31 마그네슘합금의 집합조직에 따른 인장특성)

  • Park, No-Jin;Hwang, Joong-Ho;Roh, Jae-Seung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Magnesium alloys are drawing a lot of attention and have been extensively studied. The major obstacle to the practical application of the alloys is the poor formability at room temperature, originating basically from the insufficient number of slip system. Development of a proper texture is one promising solution to improve the formability. In the present work, after extrusion and full annealing, microstructures, texture developments and tensile properties of AZ31 Mg alloys are studied. After full annealing strong <1010>||ED fiber texture and weak <1120>+<1230>||ED fiber texture (c-axes in the radial direction) were developed. The textures are distinctly influencing the tensile properties, which can be understood in terms of the activation of basal slip modes. With the random orientation, which is developed in the $45^{\circ}$ sample to the extrusion direction, the better workability can be achieved at room temperature.

Effects of Amount of Second Cold-Reduction on Secondary Recrystallization and Texture Development in Grain-Oriented Silicon Steel

  • Yoon, Young-Ku;Lee, Taek-Dong
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.129-140
    • /
    • 1971
  • Two laboratory-melt heats of 3.25 silicon-iron were made and processed according to a normal commercial practice. Some of the important processing variables that were studied in relation to secondary recrystallization and texture development were contents of manganese and sulfur, heat-treatments after hot-rolling that were used to achieve different hot-rolled microstructures, and amounts of second cold-reduction. The main effort of the present study was directed toward elucidating the relationships among the amount of second cold-reduction, activation energies associated with secondary recrystallization and texture development. The specimens that had been cold-reduced 10% exhibited only grain growth by strain-induced grain boundary migration and did not exhibit secondary recrystallization. Secondary recrystallization did rot appear to completely occur in the 30% cold-reduced specimens, although the nucleation for secondary recrystallization was observed. The second cold-reduction in an amount of 50% was shown to be the optimun for secondary recrystallization and texture development by subsequent processing.

  • PDF

A Study on Dress Design from the Development of Materials Focused on Tapestry (타피스트리 중심의 소재개발을 통한 의상디자인개발에 관한 연구)

  • 홍성미;이인성
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.6
    • /
    • pp.111-121
    • /
    • 2004
  • This study focused on the development of creative materials by applying tapestry to produce original and high-grade dresses with consideration the modems' tendency to place high value on personal taste and style. The development remained sensitive to current trends and attempted to expand into high value-added dresses. Materials in modem fashion design, as a basis of the fashion industry, can lead to a current of new fashion and produce novel and creative ideas by stimulating the designers' creativity. Designers can diversely express a form according to their intention, since tapestry allows the expression of various feelings of texture and forms according to the combination mode of technique, structure and materials on a basic plane. Moreover, tapestry encrourages the development of varied designs because it can effectively display the texture and color of a textile surface through the careful selection of materials even under the same technique. Tapestry can apply forms similar to a textile's basic structure to fashion design and can create high added value with the merit of being 'handmade'.