• Title/Summary/Keyword: Texture Image segmentation

Search Result 144, Processing Time 0.024 seconds

Region-based Image Retrieval using Wavelet Transform and Image Segmentation (웨이브릿 변환과 영상 분할을 이용한 영역기반 영상 검색)

  • 이상훈;홍충선;곽윤식;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1391-1399
    • /
    • 2000
  • In this paper, we discussed the region-based image retrieval method using image segmentation. We proposed a segmentation method which can reduce the effect of a irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The content-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector. The similarity measure between regions is processed by the Euclidean distance of the feature vectors. The simulation results shows that the proposed method is reasonable.

  • PDF

Estimation of the frequency component and the orientational angle in texture image based on the QPS filter (QPS 필터에 의한 질감영상의 주파수성분과 방향각 평가)

  • 류재민;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1123-1131
    • /
    • 1996
  • Several improved quadrature polar separable (QPS) filters have been proposed and applied in texture processing since Knutsson proposed the QPS filter. They include a Knutsson's cosine function or oan exponential attenuation function, as the orientational function, and a Knutsson's exponential function or a finite prolate spheroidal sequence (FPSS) or an asymptotic FPSS, as the radial weighting functions. They represent different properties in terms of the generation of texture images, the orientational estimation, and the segmentation of synthetic texture image. In this paper, we have constructed several kernal functions for the 2-D QPS filter and analyzed their properties. A series of experiments have been carried out in order to estimate the frequency components and orientational angles of a local texture in Fourier domain. finally some problems encountered in applying QPS filters to feature description and segmentation are considered. Experimental results show that the improved Knutsson's filter and the asymptotic FPSS filter are useful in terms of the orientational estimation and the sementation of synthetic texture image.

  • PDF

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

A Region-based Image Retrieval System using Salient Point Extraction and Image Segmentation (영상분할과 특징점 추출을 이용한 영역기반 영상검색 시스템)

  • 이희경;호요성
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2002
  • Although most image indexing schemes ate based on global image features, they have limited discrimination capability because they cannot capture local variations of the image. In this paper, we propose a new region-based image retrieval system that can extract important regions in the image using salient point extraction and image segmentation techniques. Our experimental results show that color and texture information in the region provide a significantly improved retrieval performances compared to the global feature extraction methods.

A Segmentation Technique of Textured Images Using Conditional 1-D Histograms (조건부 1차원 히스토그램을 이용한 Texture 영상 분할)

  • 양형렬;이정환;김성대
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

Block-based Color Image Segmentation Using Y/C Bit-Plane Sum]nation Image (Y/C 비트 평면합 영상을 이용한 블록 기반 칼라 영상 분할)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.

  • PDF

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.

Texture Images Segmentation by Combination of Moment & Homogeneity Features (모멘트와 동차성 특징 결합에 의한 텍스쳐 영상 분할)

  • Mo, Moon-Jung;Lim, Jong-Seok;Lee, Woo-Beom;Kim, Wook-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3592-3602
    • /
    • 2000
  • Image processing consist of image analysis and classification. The one is extracting of feature value in the image. The other is segimentationof image that have same properiv. A novel approach for the analysis and classification of tezture images based on statistical texture prunitive estraction are proposed. In this approach, feature vector extracting is based on stalisucal method using apatial dependence of grey level and use general lexture proerty. In is advantageous that not effiected on structure and type of lexture. These components describe the amount of roughness and softness of texture images Two leatures. Moment and Homogeneity, are componted from GLCM(gray level co-occurrence matrices) of the lexture promitive to charactenize statisical properties of the image. We show the successful experimental results by considerationof these two components fro the analysis and classificationto regular and irregular texture images.

  • PDF

FRIP System for Region-based Image Retrieval (영역기반 영상 검색을 위한 FRIP 시스템)

  • Ko, Byoung-Chul;Lee, Hae-Sung;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • In this paper, we have designed a region-based image retrieval system, FRIP(Finding Region In the Pictures). This system includes a robust image segmentation scheme using color and texture direction and retrieval scheme based on features of each region. For image segmentation, by using a circular filter, we can protect the boundary of round object and merge stripes or spots of objects into body region. It also combines scaled and shifted color coordinate and texture direction. After image segmentation, in order to improve the storage management effectively and reduce the computation time, we extract compact features from each region and store as index. For user interface, by the user specified constraints such as color-care / don't care. scale-care / dont care, shape-care / dont care and location-care / dont care, the overal/ matching score is estimated and the top Ie nearest images are reported in the ascending order of the final score.

  • PDF

Trends in image processing techniques applied to corrosion detection and analysis (부식 검출과 분석에 적용한 영상 처리 기술 동향)

  • Beomsoo Kim;Jaesung Kwon;Jeonghyeon Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.353-370
    • /
    • 2023
  • Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis.