• 제목/요약/키워드: Texture Image segmentation

검색결과 144건 처리시간 0.034초

A High Image Compression for Computer Storage and Communication

  • 장종환
    • 자연과학논문집
    • /
    • 제4권
    • /
    • pp.191-220
    • /
    • 1991
  • Human Visual System(HVS)의 특성과 image의 textural regions의 roughness을 이용하여 image segmentation을 행하여 high compression에서도 고화질을 나타내는 새로운 image coder를 이 논문에서 논한다. 제안된 image coder는 constant segments를 가진 segmentation-based image coding technique의 문제들을 다음과 같은 방법론을 제안함으로써 해결하였다. Image를 HVS으로 보았을 때 degree of roughness에 관하여 textually homogeneous regions으로 segmentation하였다. Fractal dimension을 roughness of textural regions을 측정하기 위하여 사용하였다. Segmentation은 fractal dimension을 thresholding하여 textural regions이 three texture classes로 분류하였다(perceived constant intensity, smooth texture, and rough texture). High compression을 가지는 고질화의 image coder는 각각의 segment boundary와 각각의 texture class에 효율적인 coding technique를 적용 함으로 얻었다.

  • PDF

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 (Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.43-54
    • /
    • 2005
  • 이본 논문에서는 Bayesian 영상 분할법과 SOM(Self Organization feature Map)을 이용한 텍스쳐(Texture) 분할 방법을 제안한다. SOM의 입력으로 다중 스케일에서의 웨이블릿 계수를 사용하고, 훈련된 SOM으로부터 관측 데이터에 대한 우도(尤度, likelihood)와 사후확률을 구하는 방법을 제시한다. 훈련된 SOM들로부터 구한 사후확률과 MAP(Maximum A Posterior) 분류법을 이용하여 텍스쳐 분할을 얻는다. 그리고 문맥 정보를 이용하여 텍스쳐 분할 결과를 개선하였다. 제안 방법은 HMT(Hidden Markov Tree)을 이용한 텍스쳐 분할보다 더 우수한 결과를 보여준다. 또한 SOM과 HMTseg라고 불리는 다중스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 결과는 HMT와 HMTseg을 이용한 결과보다 더 우수한 성능을 보여준다.

Enhanced Graph-Based Method in Spectral Partitioning Segmentation using Homogenous Optimum Cut Algorithm with Boundary Segmentation

  • S. Syed Ibrahim;G. Ravi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.61-70
    • /
    • 2023
  • Image segmentation is a very crucial step in effective digital image processing. In the past decade, several research contributions were given related to this field. However, a general segmentation algorithm suitable for various applications is still challenging. Among several image segmentation approaches, graph-based approach has gained popularity due to its basic ability which reflects global image properties. This paper proposes a methodology to partition the image with its pixel, region and texture along with its intensity. To make segmentation faster in large images, it is processed in parallel among several CPUs. A way to achieve this is to split images into tiles that are independently processed. However, regions overlapping the tile border are split or lost when the minimum size requirements of the segmentation algorithm are not met. Here the contributions are made to segment the image on the basis of its pixel using min-cut/max-flow algorithm along with edge-based segmentation of the image. To segment on the basis of the region using a homogenous optimum cut algorithm with boundary segmentation. On the basis of texture, the object type using spectral partitioning technique is identified which also minimizes the graph cut value.

영상 영역화를 이용한 영상 부호화 기법 (An Image Coding Technique Using the Image Segmentation)

  • 정철호;이상욱;박래홍
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.914-922
    • /
    • 1987
  • An image coding technique based on a segmentation, which utilizes a simplified description of regions composing an image, is investigated in this paper. The proposed coding technique consists of 3 stages: segmentation, contour coding. In this paper, emphasis was given to texture coding in order to improve a quality of an image. Split-and-merge method was employed for a segmentation. In the texture coding, a linear predictive coding(LPC), along with approximation technique based on a two-dimensional polynomial function was used to encode texture components. Depending on a size of region and a mean square error between an original and a reconstructed image, appropriate texture coding techniques were determined. A computer simulation on natural images indicates that an acceptable image quality at a compression ratio as high as 15-25 could be obtained. In comparison with a discrete cosine transform coding technique, which is the most typical coding technique in the first-generation coding, the proposed scheme leads to a better quality at compression ratio higher than 15-20.

  • PDF

유사한 색상과 질감영역을 이용한 객체기반 영상검색 (Object-Based Image Search Using Color and Texture Homogeneous Regions)

  • 유헌우;장동식;서광규
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.455-461
    • /
    • 2002
  • Object-based image retrieval method is addressed. A new image segmentation algorithm and image comparing method between segmented objects are proposed. For image segmentation, color and texture features are extracted from each pixel in the image. These features we used as inputs into VQ (Vector Quantization) clustering method, which yields homogeneous objects in terns of color and texture. In this procedure, colors are quantized into a few dominant colors for simple representation and efficient retrieval. In retrieval case, two comparing schemes are proposed. Comparing between one query object and multi objects of a database image and comparing between multi query objects and multi objects of a database image are proposed. For fast retrieval, dominant object colors are key-indexed into database.

Automated segmentation of concrete images into microstructures: A comparative study

  • Yazdi, Mehran;Sarafrazi, Katayoon
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.315-325
    • /
    • 2014
  • Concrete is an important material in most of civil constructions. Many properties of concrete can be determined through analysis of concrete images. Image segmentation is the first step for the most of these analyses. An automated system for segmentation of concrete images into microstructures using texture analysis is proposed. The performance of five different classifiers has been evaluated and the results show that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of concrete.

신경회로망과 다중스케일 Bayesian 영상 분할 기법을 이용한 결 분할 (Texture segmentation using Neural Networks and multi-scale Bayesian image segmentation technique)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.39-48
    • /
    • 2005
  • 본 논문에서는 Bayesian 추정법과 신경회로망을 이용한 새로운 결 분할 방법을 제안한다 신경회로망의 입력으로는 다중스케일을 가지는 웨이블릿 계수와 인접한 이웃 웨이블릿 계수들의 문맥정보를 사용하고, 신경회로망의 출력을 사후 확률로 모델링한다. 문맥정보는 HMT(Hidden Markov Tree) 모델을 이용하여 구한다. 제안 방법은 HMT를 이용한 ML(Maximum Likelihood) 분할 보다 더 우수한 결과를 보여준다. 또한 HMT를 이용한 결 분할 방법과 제안 방법을 이용한 결 분할 각각에 HMTseg라고 불리는 다중 스케일 Bayesian 영상 분할 기술을 이용하여 후처리를 행한 결 분할 또한 제안 방법이 우수함을 보여준다.

멀티미디어 텔레컨퍼런스를 위한 새로운 영상 압축 기술 (A New Image Compression Technique for Multimedia Teleconferences)

  • 김용호;장종환
    • 자연과학논문집
    • /
    • 제5권2호
    • /
    • pp.33-38
    • /
    • 1992
  • 텍스처럴 리전의 러프니스와 사람의 시각 시스템의 특성에 기초하여 세크멘테이션을 수행하는, 멀티미디어 텔레컨퍼런스를 위한 새로운 텍스처 세그멘테이션-베이스 영상 코우딩 기술을 제안한다. 세그멘테이션은, 텍스처의 영역이, 지각된 콘스탄트 인텐시티와 스무드 텍스처 및 러프 텍스처의 세가지 텍스처 클래스로 분류되도록 프랙탈 디멘전을 쓰레쉬호울딩하여 이루어진다. 각 세그먼트 바운더리와 각 텍스처 클래스를 위한 효과적인 코우딩 기술을 개발하여 높은 압축률과 좋은 영상 품질을 갖는 영상 코우딩 시스템을 달성하고, 이 기술의 코우딩 효율을 잘 확립된 기술 (디스크릿 코사인 트랜스폼(DCT) 영상 코우딩)의 코우딩 효율과 비교한다.

  • PDF

ART2를 이용한 효율적인 텍스처 분할과 합병 (Texture Segmentation using ART2)

  • 김도년;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.974-976
    • /
    • 1995
  • Segmentation of image data is an important problem in computer vision, remote sensing, and image analysis. Most objects in the real world have textured surfaces. Segmentation based on texture information is possible even if there are no apparent intensity edges between the different regions. There are many existing methods for texture segmentation and classification, based on different types of statistics that can be obtained from the gray-level images. In this paper, we use a neural network model --- ART-2 (Adaptive Resonance Theory) for textures in an image, proposed by Carpenter and Grossberg. In our experiments, we use Walsh matrix as feature value for textured image.

  • PDF