• 제목/요약/키워드: Texture Features

검색결과 497건 처리시간 0.022초

GPU를 이용한 Gabor Texture 특징점 기반의 금속 패드 변색 분류 알고리즘 (Discolored Metal Pad Image Classification Based on Gabor Texture Features Using GPU)

  • 최학남;박은수;김준철;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.778-785
    • /
    • 2009
  • This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.

임의의 영역 안에 텍스처 표현을 위한 Wavelet및 Gabor 텍스처 기술자와 성능평가 (Gabor and Wavelet Texture Descriptors in Representing Textures in Arbitrary Shaped Regions)

  • 심동규
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.287-295
    • /
    • 2006
  • 본 논문은 임의의 영역 안에 존재하는 텍스처를 검색하기 위한 wavelet과 Gabor기반 텍스처 표현 기법을 제안하고 이들의 검색성능을 평가한다. 지금까지 Gator 평면에서의 평균과 표준편차 특징 기술자가 직사각형안의 텍스처를 표현하기에 가장 적합한 것으로 알려져 있다. 하지만 임의의 영역 안의 물체를 표현하는 기술이 실제 검색이나 여러 다른 텍스처 표현 응용 예에 더욱 필요한 실정이다. 본 연구에서는 wavelet과 Gabor 필터에 기반한 특징 추출법을 제안하고 이들을 실제 텍스처 데이터 베이스에 적용해 본 결과, wavelet기반 특징 기술자가 Gator기반 기술자에 비하여 더욱 효과적임을 발견하였다. 특히 wavelet평면에서 표준편차와 엔트로피 특징을 사용함으로써 가장 좋은 검색 성능을 냄을 알 수 있었다. 또한, 본 논문에서는 다양한 실제 텍스처 영상을 가지고 wavelet과 Gator에 기반한 다양한 특징벡터에 따른 검객 성능을 평가하였다.

  • PDF

Region of Interest Heterogeneity Assessment for Image using Texture Analysis

  • Park, Yong Sung;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.17-21
    • /
    • 2016
  • Heterogeneity assessment of tumor in oncology is important for diagnosis of cancer and therapy. The aim of this study was performed assess heterogeneity tumor region in PET image using texture analysis. For assessment of heterogeneity tumor in PET image, we inserted sphere phantom in torso phantom. Cu-64 labeled radioisotope was administrated by 156.84 MBq in torso phantom. PET/CT image was acquired by PET/CT scanner (Discovery 710, GE Healthcare, Milwaukee, WI). The texture analysis of PET images was calculated using occurrence probability of gray level co-occurrence matrix. Energy and entropy is one of results of texture analysis. We performed the texture analysis in tumor, liver, and background. Assessment textural features of region-of-interest (ROI) in torso phantom used in-house software. We calculated the textural features of torso phantom in PET image using texture analysis. Calculated entropy in tumor, liver, and background were 5.322, 7.639, and 7.818. The further study will perform assessment of heterogeneity using clinical tumor PET image.

영상분류문제를 위한 역전파 신경망과 Support Vector Machines의 비교 연구 (A Comparison Study on Back-Propagation Neural Network and Support Vector Machines for the Image Classification Problems)

  • 서광규
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1889-1893
    • /
    • 2008
  • 본 논문은 영상 분류 문제를 위한 support vector machines (SVMs)의 적용을 통한 분류의 성능을 다루고 있다. 본 연구에서는 영상 분류 문제에서 자연영상을 대상으로 색상, 질감, 형상 특징벡터를 추출하고, 각각의 특징벡터와 이들을 결합한 특징벡터를 사용하여 역전파 신경망과 SVM 기반의 방법을 적용하여 영상 분류의 정확성을 비교한다. 실험결과는 각각의 특징벡터중에는 색상 특징벡터값을 이용한 영상 분류가 그리고 각각의 특징벡터보다는 이들을 결합한 특징벡터를 이용한 영상 분류가 보다 우수함을 보여준다. 그리고 알고리즘간의 비교에서는 정확성과 일반화성능 측면에서 역전파 신경망보다 SVMs이 우수함을 보였다.

컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석 (Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system)

  • 박병은;장원석;유선국
    • 한국멀티미디어학회논문지
    • /
    • 제20권1호
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

A Rotation Invariant Image Retrieval with Local Features

  • You, Hee-Jun;Shin, Dae-Kyu;Kim, Dong-Hoon;Kim, Hyun-Sool;Park, Sang-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.332-338
    • /
    • 2003
  • Content-based image retrieval is the research of images from database, that are visually similar to given image examples. Gabor functions and Gabor filters are regarded as excellent methods for feature extraction and texture segmentation. However, they have a disadvantage not to perform well in case of a rotated image because of its direction-oriented filter. This paper proposes a method of extracting local texture features from blocks with central interest points detected in an image and a rotation invariant Gabor wavelet filter. We also propose a method of comparing pattern histograms of features classified by VQ (Vector Quantization) among images.

회전불변 Gabor 필터를 이용한 영상검색 (Image Retrieval using Rotation Invariant Gabor Filter)

  • 김동훈;신대규;김현술;정태윤;박상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권7호
    • /
    • pp.323-326
    • /
    • 2002
  • As multimedia database and digital image libraries are enlarged, CBIR(Content Based Image Retrieval) has been getting importance for the efficient search. Generally, CBIR uses primitive features such as color, shape, texture and so on. Among various methods of CBIR, Gabor wavelet has good image retrieval performance with texture features but it has a disadvantage which does not perform well for a rotated image because of its direction oriented filter. In this paper, we propose a new method to solve this problem by modifying Gabor filter for all directions. And then we will compare the searching performance of the proposed method with those of conventional image retrieval methods through experiments with trademarks.

영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템 (Content-Based Image Retrieval System using Feature Extraction of Image Objects)

  • 정세환;서광규
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

신경 회로망을 사용한 비 파라메테 텍스춰 추출 (Non-Parametric Texture Extraction using Neural Network)

  • 전동근;홍선표;송자윤;김상진;김기준;김성철
    • The Journal of the Acoustical Society of Korea
    • /
    • 제14권2E호
    • /
    • pp.5-11
    • /
    • 1995
  • 본 연구에서는 화상에 있어서 패턴의 공간적인 특징을 추출하기위한 목적으로 신경회로망을 적용하는 방법을 제안하였다. 적용한 신경회로망은 3중의 구조를 가지며, 그 학습방법으로는 back-propagation 알고리즘을 사용하였다. 또한 이동이나 회전과 같은 패턴의 변위에 대응하기 위하여, 화상으로부터 co-occurrence matrix를 구하여, 신경회로망의 입력패턴으로 사용하였다. 제안한 방법을 평가하기 위하여 종래의 대표적방법인 화소의 spectral 정보를 이용한 최대유도법(maximum likelihood method)으로는 식별이 곤란한 시가지지역과 모래지역을 선정하여, 본 방법과 Haralick에 의하여 제안된 teture features를 이용하여 분류한 결과, texture features를 이용한 방법으로는 67%~89%의 식별률을 얻었음에 반하여, 본 연구에서 제안한 신경회로망을 사용한 방법으로는 80%~98%의 안정되고 높은 식별률을 얻었다.

  • PDF

Texture Based Automated Segmentation of Skin Lesions using Echo State Neural Networks

  • Khan, Z. Faizal;Ganapathi, Nalinipriya
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.436-442
    • /
    • 2017
  • A novel method of Skin lesion segmentation based on the combination of Texture and Neural Network is proposed in this paper. This paper combines the textures of different pixels in the skin images in order to increase the performance of lesion segmentation. For segmenting skin lesions, a two-step process is done. First, automatic border detection is performed to separate the lesion from the background skin. This begins by identifying the features that represent the lesion border clearly by the process of Texture analysis. In the second step, the obtained features are given as input towards the Recurrent Echo state neural networks in order to obtain the segmented skin lesion region. The proposed algorithm is trained and tested for 862 skin lesion images in order to evaluate the accuracy of segmentation. Overall accuracy of the proposed method is compared with existing algorithms. An average accuracy of 98.8% for segmenting skin lesion images has been obtained.