• Title/Summary/Keyword: Texture Complexity

Search Result 84, Processing Time 0.023 seconds

Digital Video Steganalysis Based on a Spatial Temporal Detector

  • Su, Yuting;Yu, Fan;Zhang, Chengqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.360-373
    • /
    • 2017
  • This paper presents a novel digital video steganalysis scheme against the spatial domain video steganography technology based on a spatial temporal detector (ST_D) that considers both spatial and temporal redundancies of the video sequences simultaneously. Three descriptors are constructed on XY, XT and YT planes respectively to depict the spatial and temporal relationship between the current pixel and its adjacent pixels. Considering the impact of local motion intensity and texture complexity on the histogram distribution of three descriptors, each frame is segmented into non-overlapped blocks that are $8{\times}8$ in size for motion and texture analysis. Subsequently, texture and motion factors are introduced to provide reasonable weights for histograms of the three descriptors of each block. After further weighted modulation, the statistics of the histograms of the three descriptors are concatenated into a single value to build the global description of ST_D. The experimental results demonstrate the great advantage of our features relative to those of the rich model (RM), the subtractive pixel adjacency model (SPAM) and subtractive prediction error adjacency matrix (SPEAM), especially for compressed videos, which constitute most Internet videos.

Multiscale Adaptive Local Directional Texture Pattern for Facial Expression Recognition

  • Zhang, Zhengyan;Yan, Jingjie;Lu, Guanming;Li, Haibo;Sun, Ning;Ge, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4549-4566
    • /
    • 2017
  • This work presents a novel facial descriptor, which is named as multiscale adaptive local directional texture pattern (MALDTP) and employed for expression recognition. We apply an adaptive threshold value to encode facial image in different scales, and concatenate a series of histograms based on the MALDTP to generate facial descriptor in term of Gabor filters. In addition, some dedicated experiments were conducted to evaluate the performance of the MALDTP method in a person-independent way. The experimental results demonstrate that our proposed method achieves higher recognition rate than local directional texture pattern (LDTP). Moreover, the MALDTP method has lower computational complexity, fewer storage space and higher classification accuracy than local Gabor binary pattern histogram sequence (LGBPHS) method. In a nutshell, the proposed MALDTP method can not only avoid choosing the threshold by experience but also contain much more structural and contrast information of facial image than LDTP.

Design Of a Video-Base Fire Detection System Using Texture and Color Spatial Distribution Information (질감 및 색채의 공간 분포 정보를 이용한 비디오 기반 화재감지 시스템)

  • Piao, Feng-Ji;Ryu, Ji-Goo;Moon, Kwang-Seok;Kim, Jong-Nam;Ung, Jang-Dae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.331-334
    • /
    • 2010
  • This paper proposes a new design of a video-base fire detection system using texture and color spatial distribution information. The video sequences used are taken in different days with different lighting conditions having different backgrounds. The time complexity of most previous vision-based fire detection techniques are very high due to lengthy programing. To overcome the problems of lengthy codes and time complexity, in this algorithm, at first we normalize the video image frames by size and color information. Then the spatial distribution of the color information is used to extract the candidate regions, later using visual texture of the fire, we detect the fire regions. The experimental results show an real-time fire detection over thousands of image frames, and have higher detection rate when compared to the conventional fire detection techniques.

  • PDF

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

Classification of Seabed Physiognomy Based on Side Scan Sonar Images

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.104-110
    • /
    • 2007
  • As the exploration of the seabed is extended ever further, automated recognition and classification of sonar images become increasingly important. However, most of the methods ignore the directional information and its effect on the image textures produced. To deal with this problem, we apply 2D Gabor filters to extract the features of sonar images. The filters are designed with constrained parameters to reduce the complexity and to improve the calculation efficiency. Meanwhile, at each orientation, the optimal Gabor filter parameters will be selected with the help of bandwidth parameters based on the Fisher criterion. This method can overcome some disadvantages of the traditional approaches of extracting texture features, and improve the recognition rate effectively.

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

Content Based Dynamic Texture Analysis and Synthesis Based on SPIHT with GPU

  • Ghadekar, Premanand P.;Chopade, Nilkanth B.
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.46-56
    • /
    • 2016
  • Dynamic textures are videos that exhibit a stationary property with respect to time (i.e., they have patterns that repeat themselves over a large number of frames). These patterns can easily be tracked by a linear dynamic system. In this paper, a model that identifies the underlying linear dynamic system using wavelet coefficients, rather than a raw sequence, is proposed. Content based threshold filtering based on Set Partitioning in a Hierarchical Tree (SPIHT) helps to get another representation of the same frames that only have low frequency components. The main idea of this paper is to apply SPIHT based threshold filtering on different bands of wavelet transform so as to have more significant information in fewer parameters for singular value decomposition (SVD). In this case, more flexibility is given for the component selection, as SVD is independently applied to the different bands of frames of a dynamic texture. To minimize the time complexity, the proposed model is implemented on a graphics processing unit (GPU). Test results show that the proposed dynamic system, along with a discrete wavelet and SPIHT, achieve a highly compact model with better visual quality, than the available LDS, Fourier descriptor model, and higher-order SVD (HOSVD).

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

Texture-based Early Decision of Block Sizes for the Complexity Reduction of HEVC Intra-Encoding in the Mobile Environment (모바일 환경에서 HEVC 인트라 인코딩의 계산 복잡도 감소를 위한 영상 특성 기반의 블록 후보 조기 결정 방법)

  • Park, Seung-Won;Rhee, Chae Eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Compared to the former H.264 standard, the number of the prediction modes has highly increased in HEVC intra prediction. Compression efficiency and accurate prediction are significantly improved. However, the computational complexity increases as well. To solve this problem, this paper proposes the new scheme where not only prediction modes but also block partition candidate are early chosen. Compared to the original intra prediction in HEVC, the proposed scheme achieves about 38% reduction in processing cycles with a marginal loss in compression efficiency.