• Title/Summary/Keyword: Texture Classification

Search Result 313, Processing Time 0.023 seconds

Classification of Ground-Glass Opacity Nodules with Small Solid Components using Multiview Images and Texture Analysis in Chest CT Images (흉부 CT 영상에서 다중 뷰 영상과 텍스처 분석을 통한 고형 성분이 작은 폐 간유리음영 결절 분류)

  • Lee, Seon Young;Jung, Julip;Lee, Han Sang;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.994-1003
    • /
    • 2017
  • Ground-glass opacity nodules(GGNs) in chest CT images are associated with lung cancer, and have a different malignant rate depending on existence of solid component in the nodules. In this paper, we propose a method to classify pure GGNs and part-solid GGNs using multiview images and texture analysis in pulmonary GGNs with solid components of 5mm or smaller. We extracted 1521 features from the GGNs segmented from the chest CT images and classified the GGNs using a SVM classification model with selected features that classify pure GGNs and part-solid GGNs through a feature selection method. Our method showed 85% accuracy using the SVM classifier with the top 10 features selected in the multiview images.

OptiNeural System for Optical Pattern Classification

  • Kim, Myung-Soo
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.342-347
    • /
    • 1998
  • An OptiNeural system is developed for optical pattern classification. It is a novel hybrid system which consists of an optical processor and a multilayer neural network. It takes advantages of two dimensional processing capability of an optical processor and nonlinear mapping capability of a neural network. The optical processor with a binary phase only filter is used as a preprocessor for feature extraction and the neural network is used as a decision system through mapping. OptiNeural system is trained for optical pattern classification by use of a simulated annealing algorithm. Its classification performance for grey tone texture patterns is excellent, while a conventional optical system shows poor classification performance.

  • PDF

Classification of Seabed Physiognomy Based on Side Scan Sonar Images

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.104-110
    • /
    • 2007
  • As the exploration of the seabed is extended ever further, automated recognition and classification of sonar images become increasingly important. However, most of the methods ignore the directional information and its effect on the image textures produced. To deal with this problem, we apply 2D Gabor filters to extract the features of sonar images. The filters are designed with constrained parameters to reduce the complexity and to improve the calculation efficiency. Meanwhile, at each orientation, the optimal Gabor filter parameters will be selected with the help of bandwidth parameters based on the Fisher criterion. This method can overcome some disadvantages of the traditional approaches of extracting texture features, and improve the recognition rate effectively.

Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim Jong-Ho;Kim Sang-Kyoon;Shin Bum-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2006
  • In this paper, we propose a hierarchical classifier of object images using neural networks for content-based image classification. The images for classification are object images that can be divided into foreground and background. In the preprocessing step, we extract the object region and shape-based texture features extracted from wavelet transformed images. We group the image classes into clusters which have similar texture features using Principal Component Analysis(PCA) and K-means. The hierarchical classifier has five layes which combine the clusters. The hierarchical classifier consists of 59 neural network classifiers learned with the back propagation algorithm. Among the various texture features, the diagonal moment was the most effective. A test with 1000 training data and 1000 test data composed of 10 images from each of 100 classes shows classification rates of 81.5% and 75.1% correct, respectively.

  • PDF

Texture Images Segmentation by Combination of Moment & Homogeneity Features (모멘트와 동차성 특징 결합에 의한 텍스쳐 영상 분할)

  • Mo, Moon-Jung;Lim, Jong-Seok;Lee, Woo-Beom;Kim, Wook-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3592-3602
    • /
    • 2000
  • Image processing consist of image analysis and classification. The one is extracting of feature value in the image. The other is segimentationof image that have same properiv. A novel approach for the analysis and classification of tezture images based on statistical texture prunitive estraction are proposed. In this approach, feature vector extracting is based on stalisucal method using apatial dependence of grey level and use general lexture proerty. In is advantageous that not effiected on structure and type of lexture. These components describe the amount of roughness and softness of texture images Two leatures. Moment and Homogeneity, are componted from GLCM(gray level co-occurrence matrices) of the lexture promitive to charactenize statisical properties of the image. We show the successful experimental results by considerationof these two components fro the analysis and classificationto regular and irregular texture images.

  • PDF

Automated Prostate Cancer Detection on Multi-parametric MR imaging via Texture Analysis (다중 파라메터 MR 영상에서 텍스처 분석을 통한 자동 전립선암 검출)

  • Kim, YoungGi;Jung, Julip;Hong, Helen;Hwang, Sung Il
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.736-746
    • /
    • 2016
  • In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.

Block Classification of Document Images by Block Attributes and Texture Features (블록의 속성과 질감특징을 이용한 문서영상의 블록분류)

  • Jang, Young-Nae;Kim, Joong-Soo;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.856-868
    • /
    • 2007
  • We propose an effective method for block classification in a document image. The gray level document image is converted to the binary image for a block segmentation. This binary image would be smoothed to find the locations and sizes of each block. And especially during this smoothing, the inner block heights of each block are obtained. The gray level image is divided to several blocks by these location informations. The SGLDM(spatial gray level dependence matrices) are made using the each gray-level document block and the seven second-order statistical texture features are extracted from the (0,1) direction's SGLDM which include the document attributes. Document image blocks are classified to two groups, text and non-text group, by the inner block height of the block at the nearest neighbor rule. The seven texture features(that were extracted from the SGLDM) are used for the five detail categories of small font, large font, table, graphic and photo blocks. These document blocks are available not only for structure analysis of document recognition but also the various applied area.

  • PDF

Color Image Analysis of Histological tissue Sections (해부병리조직에 대한 칼라 영상분석)

  • Choe, Heung-Guk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, we suggest a new direct method for mage segmentation using texture and color information combined through a multivariate linear discriminant algorithm. The color texture is computed in nin 3${\times}$3 masks obtained from each 3${\times}$3${\times}$3 spatio-spectral neighborhood in the image using the classical haralick and Pressman texture features. Among these 9${\times}$28 texture features the best set was extracted from a training set. The resulting set of 10 features were used to segment an image into four different regions. The resulting segmentation was Compared to classical color and texture segmentation methods using both box classifiers and maximum likelihood classification. It compared favourably on the test image from a Fastred-Lightgreen stained prostatic histological tissue section based on visual inspection. The classification accuracy of 97.5% for the new method obtained on the training data was also among the best of the tested methods. If these results hold for a larger set of images, this method should be a useful tool for segmenting images where both color and texture are relevant for the segmentation process.

  • PDF

The Classification of Roughness fir Machined Surface Image using Neural Network (신경회로망을 이용한 가공면 영상의 거칠기 분류)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason so many studies were car-ried out through various attempts that were contact or non-contact using computer vision. Even through these efforts there were few good results in this research., however texture analysis making a important role to solve these problems in various fields including universe aviation living thing and fibers. In this study feature value of co-occurrence matrix was calculated by statistic method and roughness value of worked surface was classified, of it. Experiment was carried out using input vector of neural network with characteristic value of texture calculated from worked surface image. It's found that recognition rate of 74% was obtained when adapting texture features. In order to enhance recogni-tion rate combination type in characteristics value of texture was changed into input vector. As a result high recognition rate of 92.6% was obtained through these processes.

  • PDF

A Study on the Visual Sensibility of Clothing Texture (의복재질의 시각적 감성연구)

  • 오해순;이경희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.10
    • /
    • pp.1412-1423
    • /
    • 2002
  • The purpose of this study is to objectively explain the visual sensibility of clothing torture that satisfies the consumer's sensibility. The photo stimuli on clothing texture are divided into hard, soft transparent and brilliant. For the study of image 38 kinds of costume samples is used. The Study was measured by using Semantic Differential method. The subjects were 410 females in twenties. The data were analyzed by factor analysis, ANOVA, MDS and regression analysis. Data were analyzed by SPSS. The major findings of this research were as follows: 1. As a result of the factor analysis,5 factors of visual sensibility were consist of high qualities, touches, looks, lightness, and warmness or coolness.2. There were significant difference in visual sensibility based on classification of clothing texture.3. The clothing texture was classified as thin-full, flat-lumpy. 4. As a result of the regression analysis, preferences of consumers can be connected directly with buying behavior and satisfaction can be closely related with preferences and positive buying behavior.