• Title/Summary/Keyword: Textronics

Search Result 4, Processing Time 0.018 seconds

Smart-textronics Product Development Process by Systematic Participatory Design Method (체계적인 사용자 참여형 디자인 방법론을 활용한 스마트 텍스트로닉스 제품 개발 프로세스)

  • Leem, Sooyeon;Lee, Sang Won
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.163-170
    • /
    • 2021
  • Smart-textronics technology which enables functional textiles has recently been applied in various fields such as smart clothes, smart home and smart health care, and a variety of smart-textronics products have been developed. In this context, the smart-textronics product development process is proposed based on the systematic participatory design method in this paper. The proposed method consists of two phases: in-depth interviews and analyzing. In the phase of in-depth interviews, participants are asked to create journey maps that include activities, pain points and emotional status and to generate solution ideas with sketches and simple prototypes. In the analyzing phase, design researchers investigate the participants' journey maps, and create personas by identifying critical characteristics with the behavior pattern analysis. Then, each persona's needs are linked with value elements of the E3 value framework. Finally, pre-survey was conducted to identify smart-textronics market and a smart sofa design is proceeded as the case study to show the applicability of the proposed method.

Development and Structural Design of Textile Touch Sensor Easily Implemented (구현방식이 용이한 텍스타일 터치센서 개발 및 구조적 설계)

  • Kim, Ji-seon;Park, Jinhee;Kim, Jooyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.1
    • /
    • pp.168-179
    • /
    • 2021
  • This study presents and develops a textile type touch sensor structural design that is easy to implement. First, the design of the touch sensor circuit finds the size of the switch with the easiest finger contact and selects a structure with a long circuit with the lowest resistance value. An experiment is performed on a change in an electrostatic capacitance value that accompanies the distance on the electrode and the magnitude of the electrode area of the structure; however, the structure having the distance on the electrode and the large electrode area shows the best resistance change. The laundry assessment was conducted three times at a time and ten times at a time with an average standard deviation less than one ohm, with little change in resistance. Consequently, there were no problems with durability and performance for laundry. Finally, in the bending evaluation, the difference in resistance can be seen between 1-2 ohms and was developed as a smart wearable in the future; in addition, there was no problem as a difference in resistance can be seen between 1 and 2 ohms.

Dyeing Properties of Bacterial Cellulose Fabric using Gardenia Jasminoides, Green Tea, and Pomegranate Peel, and the Effects of Protein Pretreatment (치자, 녹차, 석류껍질을 활용한 박테리아 셀룰로오스 섬유소재의 염색성과 단백질 전처리의 영향)

  • Yerim Hwang;Hyunjin Kim;Hye Rim Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.511-527
    • /
    • 2024
  • The aim of this study was to impart color to bacterial cellulose (BC) fabric using various natural plant-based dyes-namely, gardenia jasminoides, green tea, and pomegranate peel. A protein pretreatment was also applied to improve the BC fabric's dyeability and mechanical properties. The BC fabric's dyeing and mordanting conditions when using plant-based natural dyes were determined by changes in the K/S values. The dyeability of BC samples dyed with green tea or pomegranate peel improved when they were pretreated with soy protein isolate (SPI) prior to dyeing. Moreover, the SPI pretreatment was efficient in improving the BC fabric's tensile strength and flexibility. This study proposes a method for dyeing BC fabric that uses plant-based natural dyes and confirms the effects of the protein pretreatment on the fabric's dyeability and durability.

Assessing the Dyeing Properties of Bacterial Cellulose Using Plant-based Natural Dyes (식물성 천연염료에 의한 박테리아 셀룰로오스 섬유소재의 염색 특성)

  • Juneyoung Minn;Hyunjin Kim;Hye Rim Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.4
    • /
    • pp.707-728
    • /
    • 2024
  • This study aimed to assess the colorizing properties of bacterial cellulose (BC) using plant-based dyes, namely spinach, beet, and banana peel, and determine the dyeing conditions of each dye based on color strength (K/S) values. Tannic acid and walnut shell powder were utilized as bio-mordants, and their effects on the dyeability of BC were compared to metallic mordants. Additionally, the type of mordant and the mordanting method were assessed according to their rubbing fastness and dry-cleaning fastness. The K/S values of the colorized and mordanted BCs were also compared to examine their mordanting conditions. Finally, the mordanting conditions for spinach, beet, and banana peel dyeing were selected as post-mordanting with tannic acid, meta-mordanting with tannic acid, and post-mordanting with walnut shell powder, respectively. Based on the results, the selected mordanting conditions improved both rubbing fastness and dry-cleaning fastness of BCs to grade 5, and the light fastness achieved grade 4-5. The tensile strength and flexibility of the dyed BCs were also enhanced and comparable to that of untreated cowhide leather.