• Title/Summary/Keyword: Textile effluent

Search Result 43, Processing Time 0.022 seconds

The technical transfer on manufacture technique of environmental-friendly leather for improved effluent in beamhouse process (피혁 폐수의 오염 저감을 위한 피혁 준비 공정 기술 보급 (Hair saving liming agent 제조 기술 및 공정 적용 기술 보급))

  • Yun, Jous-Kuk;Cho, Do-Kwang;Park, Jae-Hyung;Baek, In-Kyu;Kim, Han-do
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • Manufacturing with a chemical for eco-friendly leather for nitrogen decrease of leather falling hair process waste water and the falling hair process that a number to decrease with sulfuration water decrease, a pollution load of COD, BOD. In this study manufactured lining agent and the unhairing assist product which did urea, mercaptan by basic matter. As a result of having dealt in hair saving process, compared, and was recalled by the existing hair burning process recovered hair, increased approximately 2times. Grain state to influence the yield that was quality of leather and an index of productivity evaluation, an improvement of contraction phenomenon (drawing) were possible. Is increased going seal, tear strength property of matter and softness and touch leather native nature in wet blue. Also, it is possible confirmation with decrease being more possible than about 50% COD, T-N density in a hair saving waste water.

  • PDF

Degradation of toxic azo dye (AO7) using Fenton's process

  • Sharma, Ashish;Verma, Manisha;Haritash, A.K.
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.189-200
    • /
    • 2016
  • This study aimed at advanced oxidation of hetero tri-functional reactive dye Acid orange 7 using photo-Fenton conditions in a lab-scale experiment. Decolourisation of Acid Orange 7 dye by Fenton's process was dependent on concentration of Hydrogen peroxide, Ferrous sulphate, pH, and contact time. A $2^3$ factorial design was used to evaluate the effects of these key factors: pH, Fe(II), and $H_2O_2$ concentration, for a dye concentration of 50 mg/L with COD of 340 mg/L at pH 3.0. The response function was removal of colour under optimised conditions; pH 3.0, [Fe(II)] 40.83 mg/L, [$H_2O_2$] 4.97 mmol/L; 13.6 min. of treatment resulting in 100% colour removal. The final COD of treated wastewater was nil suggesting that AOP is a potentially useful process of color removal and dye degradation/mineralisation of effluent having AO7. Minimum contact time for complete decolourisation was at 5 mmol/l $H_2O_2$ concentration. Increase in $FeSO_4$ (mg/l) concentration resulted in decrease of time for complete decolourisation. Box-Behnken Design was used to optimize the process variables. Maximum and minimum levels of pH (3-5), $H_2O_2$ (4-6 mmol/l), $FeSO_4$ (30-46 mg/l) and contact time (5-15 minutes) were used. The statistical analysis revealed a value of 0.88 for coefficient of regression ($R^2$) indicating a good fit of model. Calculated F-value was found higher than the tabulated value confirming to significance of the model. Based on student's t-test, Ferrous sulphate, pH, and contact time have a positive effect on the percent decolourisation of Acid Orange 7.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.