• Title/Summary/Keyword: Textile Structures

Search Result 184, Processing Time 0.028 seconds

Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading (동적 충격하중에 의한 미소균열 직조복합구조의 특성)

  • Hur, Hae-Kyu;Kim, Min-Sung;Jung, Jae-Kwon;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

Effects on Printing Quality according to Yarn Twist and Knitting Structure of Media in Digital Textile Printing(II) (DTP(Digital Textile Printing)에서 미디어의 원사꼬임 및 편성구조가 프린팅 Quality에 미치는 영향(2))

  • Park, Soon-Young;Jeon, Dong-Won;Park, Yoon-Cheol;Lee, Beom-Soo
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • For high quality DTP products, it is important to optimize the parameters of media, pre- and after-treatment, ink, printer, etc. This study investigated the effect of types of fabrics(media) as a DTP parameters. Especially, the effects of media properties such as yarn twist and knitted fabric structure, on printability and color difference were examined. Two types of cotton yarn twist(830 and 1630 twist/meter) and five knitted structures of media were prepared with a single circular knitting machine. The K/S values of hard-twist samples were higher than those of normal-twist samples in every media structures. It is more effective to use the knitted fabrics of a hard-twist yarn to obtain dark color in the printing above input level value 60 where the printability improvement was most pronounced in case of plain structure. Among the five media structures a plain structure was the highest and that of corduroy was the lowest in terms of K/S values. Also ${\Delta}E$ values and lightness of the hard-twist yarn samples were smaller than that of normal-twist yarn samples when ${\Delta}E$ values were tested by using a standard of a normal twist yarn sample with a plain structure, which was increased in the case of corduroy structure.

Development of 3D Printed Textiles and Clothing Design Modeling (3D 프린티드 텍스타일 개발 및 의류디자인 모델링)

  • Jeong-wook Choi
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.26 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • 3D printing technology is a key technology of the Fourth Industrial Revolution and has been gaining attention in various fields, having been selected as one of the top 10 core manufacturing technologies by the U.S. government. In the apparel industry as well, there have been various attempts to develop products using 3D printers. However, compared to other industries and research fields, utilization remains insufficient. This is mainly due to the high price of large 3D printers and a limited varieties of filaments, making it difficult to implement traditional textiles and produce full-size garments. In this study, to develop 3D printed textiles, textile structures that can be 3D printed were categorized. Applying various types of filaments and layering methods allowed for the printing and evaluation of structures, ultimately leading to the selection of three types of 3D printed textile structures suitable for use as clothing materials. Subsequently, types of filaments were selected that match the chosen textile structures and suitabel designs were applied to develop 3D printed clothing designs. As a result of this study, an ideal form for 3D printing textiles was proposed and mehods were presented for clothing construction using practical (versatile) 3D printing technology. This study plays a significant role in contributing to the expansion of research areas related to 3D printing technology in the fashion field and suggesting effective research directions.

Synthesis of New Phospholipid Biocompatible Textile Finishing Agent

  • Ko, Yong-Il;Yi, Jong-Woo;Kim, Sung-Hoon;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.293-299
    • /
    • 2010
  • A methacrylate monomer having phospholipid polar group and cell membrane structure is known as highly biocompatible. Based on these properties, new biocompatible multi-functional textile finishing agent was developed using phospolipid copolymer. 2-Methacryloyloxyethyl phosphorylcholine (MPCE) was synthesized using 2-hydroxyethyl methacrylate (HEMA), 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP) and triethylamine (TEA), and then polymerized to prepare MPCE copolymer by radical polymerization using azobisisobutyronitrile(AIBN). The structures of MPCE was characterized by FT-IR and 1H NMR and will be evaluated as textile finishing agent in further study.

A Study for the Real-Time Textile Dimension Inspection System Using Image Processing Technique (영상처리 기법을 이용한 실시간 섬유 성량 검사 시스템 개발)

  • Lee, Eung-Ju;Bae, Seong-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.992-999
    • /
    • 2000
  • Textile dimension inspection is one of the basic issues in the textile dyeing and finishing industry. And also, it a plays an important role in the quality control of total fabric products. In this paper, we implement a real-time textile dimension inspection system which detects various real defects, defects positions of textile and the density of textiles. The proposed method consists of textile density measurement algorithms with zone-occurrence features from subband image which detect various types of real defects. The performance of the proposed method is tested with a number of real textile samples with 10 types of defects and three basic structures of textile. By the dimension inspection of textile at continuous stages in the fabrication process, it is possible to measure the density of textile up to 150m/min and to detect the defect of textile at real time within $\pm$1% error percentages. And also it can be monitored the condition of textile throughout at all the significant working process and can be improved textile quality.

  • PDF

Synthesis of New Biocompatible Multi-Functional Textile Finishing Agent

  • Ko, Young-Il;Jung, Chul-Won;Kim, Sung-Hoon;Bae, Jin-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.160-161
    • /
    • 2009
  • A methacrylate monomer having phospholipid polar group and cell membrane structure is known as highly biocompatible. Based on these properties, new biocompatible multi-functional textile finishing agent was developed using phospolipid copolymer. 2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesized using 2-hydroxyethyl methacrylate (HEMA), 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP), trimethylamine (TMA) and triethylamine (TEA), and then polymerized to prepare MPC copolymer by radical polymerization using AIBN. The structures of MPC and MPCE were characterized by FTIR and 1H NMR and will be evaluated as textile finishing agent in further study.

  • PDF

Development of Customized Textile Design using AI Technology -A Case of Korean Traditional Pattern Design-

  • Dawool Jung;Sung-Eun Suh
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.6
    • /
    • pp.1137-1156
    • /
    • 2023
  • With the advent of artificial intelligence (AI) during the Fourth Industrial Revolution, the fashion industry has simplified the production process and overcome the technical difficulties of design. This study anticipates likely changes in the digital age and develops a model that will allow consumers to design textile patterns using AI technology. Previous studies and industrial examples of AI technology's use in the textile design industry were investigated, and a textile pattern was developed using an AI algorithm. A new textile design model was then proposed based on its application to both virtual and physical clothing. Inspired by traditional Korean masks and props, AI technology was used to input color data from open application programming interface images. By inserting these into various repeating structures, a textile design was developed and simulated as garments for both virtual and real garments. We expect that this study will establish a new textile design development method for Generation Z, who favor customized designs. This study can inform the use of personalization in generative textile design as well as the systemization of technology-driven methods for customized and participatory textile design.

Thermal Properties of Copolyetherester/silica Nanocomposites

  • Baik, Doo-Hyun;Kim, Hae-Young;Kwon, Sun-Jin;Kwon, Myung-Hyun;Lee, Han-Sup;Youk, Ji-Ho;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.367-371
    • /
    • 2006
  • Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.

Organic light emitting filaments (유기발광섬유)

  • Park, Jukwang;Lee, Junghoon;Chang Seoul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.358-359
    • /
    • 2003
  • Organic light-emitting device have attracted much interest due to their potential application in large area, full color, flat panel displays. Poly(p-phenylene)(PPP), as a blue light-emitting materials, have studied in our previous report. Thus, we selected poly(p-phenylene) (PPP) to fabricate the organic light-emitting filaments(OLEF) [1-2]. In this paper, we fabricated an organic light-emitting filaments(OLEF), which can be woven into fabric. The key concept was flexibility in one-dimensional structures. (omitted)

  • PDF