• Title/Summary/Keyword: Textile Strain Sensor

Search Result 13, Processing Time 0.024 seconds

Wearable Textile Strain Sensors (웨어러블 텍스타일 스트레인 센서 리뷰)

  • Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

Resistive E-band Textile Strain Sensor Signal Processing and Analysis Using Programming Noise Filtering Methods (프로그래밍 노이즈 필터링 방법에 의한 저항 방식 E-밴드 텍스타일 스트레인 센서 신호해석)

  • Kim, Seung-Jeon;Kim, Sang-Un;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2022
  • Interest in bio-signal monitoring of wearable devices is increasing significantly as the next generation needs to develop new devices to dominate the global market of the information and communication technology industry. Accordingly, this research developed a resistive textile strain sensor through a wetting process in a single-wall carbon nanotube dispersion solution using an E-Band with low hysteresis. To measure the resistance signal in the E-Band to which electrical conductivity is applied, a universal material tester, an Arduino, and LCR meters that are microcontroller units were used to measure the resistance change according to the tensile change. To effectively handle various noises generated due to the characteristics of the fabric textile strain sensor, the filter performance of the sensor was evaluated using the moving average filter, Savitsky-Golay filter, and intermediate filters of signal processing. As a result, the reliability of the filtering result of the moving average filter was at least 89.82% with a maximum of 97.87%, and moving average filtering was suitable as the noise filtering method of the textile strain sensor.

A basic study on the application of hydrogel membrane to a sensor for measuring large strain

  • Morikawa, Hirohisa;Hirai, Toshihiro;Sakurai, Masayuki;Nakazawa, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.952-956
    • /
    • 1989
  • We experimentally investigated the mechanical and electrical characteristics of the poly vinyl alcohol(PVA) hydrogel which have attracted special interest as a mechanochemical material, and the applicability of the hydrogel membrane to a sensor for measuring large strain. As a result, the PVA hydrogel could be regarded as a Hookean elastic material and was treated as an electric resistance which was proportional to the tensile strain within a linearly elastic range.

  • PDF

Developing a Prototype of Motion-sensing Smart Leggings (동작센싱 스마트레깅스 프로토타입 개발)

  • Jin-Hee Hwang;Seunghyun Jee;Sun Hee Kim
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.694-706
    • /
    • 2022
  • This study focusses on the development of a motion-sensing smart leggings prototype with the help of a module that monitors motion using a fiber-type stretch sensor. Additionally, it acquires data on Electrocardiogram (ECG), respiration, and body temperature signals, for the development of smart clothing used in online exercise coaching and customized healthcare systems. The research process was conducted in the following order: 1) Fabrication of a fiber-type elastic strain sensor for motion monitoring, 2) Positioning and attaching the sensor, 3) Pattern development and three-dimensional (3D) design, 4) Prototyping 5) Wearability test, and 6) Expert evaluation. The 3D design method was used to develop an aesthetic design, and for sensing accurate signal acquisition functions, wearability tests, and expert evaluation. As a result, first, the selection or manufacturing of an appropriate sensor for the function is of utmost importance. Second, the selection and attachment method of a location that can maximize the function of the sensor without interfering with any activity should be studied. Third, the signal line selection and connection method should be considered, and fourth, the aesthetic design should be reflected along with functional verification. In addition, the selection of an appropriate material is important, and tests for washability and durability must be made. This study presented a manufacturing method to improve the functionality and design of smart clothing, through the process of developing a prototype of motion-sensing smart leggings.

Basic Study of Weaving Structure and Durability for Fabric-type ECG Sensor Design (직물형 ECG센서 설계를 위한 제직구조 및 내구성에 대한 기초연구)

  • Ryu, Jong-Woo;Jee, Young-Joo;Kim, Hong-Jae;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.219-226
    • /
    • 2011
  • Recently, study of functional clothing for vital sensing is focused on improving conductivity and decreasing resistance, in order to enhance the electrocardiogram(ECG) sensing accuracy and obtained stable environmental durability on operation condition. In this study, four ECG fabrics that having different componnt yarns and weaving structures were produced to analyze their environmental durabilities and electric properties under general operation conditions including different physical and chemical stimulation. For outstanding electric properties and physical properties, the optimized ECG sensing fabric should consist of a fabric of 2 up 3 down twill structure containing 210de silver-coated conductive yarns and polyester yarn in warp and weft directions respectively. The selected fabric has $0.11{\Omega}$ which is relative lower resistance than otherwisely produced fabrics under ECG measurement condition. And it has 7% stable resistance changes under 25% strain and repeated strain.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

A Study on the Textile Sensor Applied to Smart Wear for Monitoring Meditation Breathing (명상호흡 모니터링용 스마트의류를 위한 호흡수 측정 직물센서 연구)

  • Hwang, Su Jung;Jung, Yoon Won;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • The purpose of this study is for fundamental research of meditation smart wear for physical and mental healing, and researching method for monitoring phase of meditation through textile by measuring the number of abdominal respiration when meditating. For this purpose, the research implemented Single Wall Carbon Nano-Tube (SWCNT) based strain gauges type textile sensor, considered reliability and validity of respiratory sensing, and analyzed efficiency of respiratory sensing based on body parts comparatively. The first preliminary experiment was to evaluate the performance of textile sensor through abdominal model dummy which open and shut of 5 cm repeatedly for 2 minutes at the rate of 0.1Hz in order to simulate abdominal respiration. It concluded signal efficiency between reference sensor(BIOPAC) and textile respiratory sensor appears statistically significant (p<0.001). The second experiment were conducted with 4 subjects doing abdominal respiration under same conditions, and after comparing the signal values between two sensors from 4 attached locations(around center and sides of omphali and phren), center of omphali and sides of phren were selected as suitable location for measuring meditational breathing as they showed large and stable signals. In result, this research aimed for implementing of the textile sensor for sensing meditational breathing of long respiration cycle, review of reliability and validity for sensing number of meditational respiration with the sensor and consideration of sensing efficiency by sensing location on body parts.

Highly Stretchable and Sensitive Strain Sensors Fabricated by Coating Nylon Textile with Single Walled Carbon Nanotubes

  • Park, Da-Seul;kim, Yoonyoung;Jeong, Soo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.363.2-363.2
    • /
    • 2016
  • Stretchable strain sensors are becoming essential in diverse future applications, such as human motion detection, soft robotics, and various biomedical devices. One of the well-known approaches for fabricating stretchable strain sensors is to embed conductive nanomaterials such as metal nanowires/nanoparticles, graphene, conducting polymer and carbon nanotubes (CNTs) within an elastomeric substrate. Among various conducting nanomaterials, CNTs have been considered as important and promising candidate materials for stretchable strain sensors owing to their high electrical conductivity and excellent mechanical properties. In the past decades, CNT-based strain sensors with high stretchability or sensitivity have been developed. However, CNT-based strain sensors which show both high stretchability and sensitivity have not been reported. Herein, highly stretchable and sensitive strain sensors were fabricated by integrating single-walled carbon nanotubes (SWNTs) and nylon textiles via vacuum-assisted spray-layer-by-layer process. Our strain sensors had high sensitivity with 100 % tensile strain (gauge factor ~ 100). Cyclic tests confirmed that our strain sensors showed very robust and reliable characteristic. Moreover, our SWNTs-based strain sensors were easily and successfully integrated on human finger and knee to detect bending and walking motion. Our approach presented here might be route to preparing highly stretchable and sensitive strain sensors with providing new opportunity to realize practical wearable devices.

  • PDF

Analysis of the Necessary Mechanical Properties of Embroiderable Conductive Yarns for Measuring Pressure and Stretch Textile Sensor Electrodes (생체 신호 측정 압력 및 인장 직물 센서 전극용 자수가 가능한 전도사의 필요 물성 분석)

  • Kim, Sang-Un;Choi, Seung-O;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • In this study, we investigated the necessary mechanical properties of conductive multifilament yarns for fabricating the electrodes of biosignal measurement pressure and stretch textile sensors using embroidery. When electrodes and circuits for smart wearable products are produced through the embroidery process using conductive multifilament yarns, unnecessary material loss is minimized, and complex electrode shapes or circuit designs can be produced without additional processes using a computer embroidering machine. However, because ordinary missionary threads cannot overcome the stress in the embroidery process and yarn cutting occurs, herein, we analyzed the S-S curve, thickness, and twist structure, which are three types of silver-coated multifilament yarns, and measured the stress in the thread of the embroidery simultaneously. Thus, the required mechanical properties of the yarns in the embroidery process were analyzed. In the actual sample production, cutting occurred in silver-coated multifilament rather than silver-coated polyamide/polyester, which showed the lowest S-S curve. In the embroidery process, the twist was unwound through repetitive vertical movement. Further, we fabricated a piezoresistive pressure/tension sensor to measure gauge factor, which is an index for measuring biological signals. We confirmed that the sensor can be applied to the fabrication of embroidery electrodes, which is an important process in the mass production of smart wearable products.