• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.022 seconds

Measuring a Valence and Activation Dimension of Korean Emotion Terms using in Social Media (소셜 미디어에서 사용되는 한국어 정서 단어의 정서가, 활성화 차원 측정)

  • Rhee, Shin-Young;Ko, Il-Ju
    • Science of Emotion and Sensibility
    • /
    • v.16 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • User-created text data are increasing rapidly caused by development of social media. In opinion mining, User's opinions are extracted by analyzing user's text. A primary goal of sentiment analysis as a branch of opinion mining is to extract user's opinions from a text that is required to build a list of emotion terms. In this paper, we built a list of emotion terms to analyse a sentiment of social media using Facebook as a representative social media. We collected data from Facebook and selected a emotion terms, and measured the dimensions of valence and activation through a survey. As a result, we built a list of 267 emotion terms including the dimension of valence and activation.

  • PDF

Emerging Gender Issues in Korean Online Media: A Temporal Semantic Network Analysis Approach

  • Lee, Young-Joo;Park, Ji-Young
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.2
    • /
    • pp.118-141
    • /
    • 2019
  • In South Korea, as awareness of gender equality increased since the 1990s, policies for gender equality and social awareness of equality have been established. Until recently, however, the gap between men and women in social and economic activities has not reached the globally desired level and led to social conflict throughout the country. In this study, we analyze the content of online news comments to understand the public perception of gender equality and the details of gender conflict and to grasp the emergence and diffusion process of emerging issues on gender equality. We collected text data from the online news that included the word 'gender equality' posted from January 2012 to June 2017 and also collected comments on each selected news item. Through text mining and the temporal semantic network analysis, we tracked the changes in discourse on gender equality and conflict. Results revealed that gender conflicts are increasing in the online media, and the focus of conflict is shifting from 'position and role inequality' to 'opportunity inequality'.

Understanding the Food Hygiene of Cruise through the Big Data Analytics using the Web Crawling and Text Mining

  • Shuting, Tao;Kang, Byongnam;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.24 no.2
    • /
    • pp.34-43
    • /
    • 2018
  • The objective of this study was to acquire a general and text-based awareness and recognition of cruise food hygiene through big data analytics. For the purpose, this study collected data with conducting the keyword "food hygiene, cruise" on the web pages and news on Google, during October 1st, 2015 to October 1st, 2017 (two years). The data collection was processed by SCTM which is a data collecting and processing program and eventually, 899 kb, approximately 20,000 words were collected. For the data analysis, UCINET 6.0 packaged with visualization tool-Netdraw was utilized. As a result of the data analysis, the words such as jobs, news, showed the high frequency while the results of centrality (Freeman's degree centrality and Eigenvector centrality) and proximity indicated the distinct rank with the frequency. Meanwhile, as for the result of CONCOR analysis, 4 segmentations were created as "food hygiene group", "person group", "location related group" and "brand group". The diagnosis of this study for the food hygiene in cruise industry through big data is expected to provide instrumental implications both for academia research and empirical application.

A Method of Predicting Service Time Based on Voice of Customer Data (고객의 소리(VOC) 데이터를 활용한 서비스 처리 시간 예측방법)

  • Kim, Jeonghun;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2016
  • With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.

Application of Text Mining for Legal Information System: Focusing on Defamation Precedent (법률정보시스템을 위한 텍스트 마이닝 적용 방안 - 명예 훼손 판례를 대상으로 -)

  • Kim, Yong Hwan
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.54 no.1
    • /
    • pp.387-409
    • /
    • 2020
  • Precedents are data containing various types of information. In this study, I proposed a method to be utilized as legal information system for the public using automatic text analysis performed on precedents. It is carried out to analyze the defamation precedent using reference provision, judgment issues, major points of judgment, and reference precedents. As a result of the analysis, legal provisions used in defamation, key issues covered by defamation, and key cases are extracted. Although only applied to the Supreme Court case regarding defamation, the proposed methodology could be applied to various legal topics.

Perceptions and Trends of Digital Fashion Technology - A Big Data Analysis - (빅데이터 분석을 이용한 디지털 패션 테크에 대한 인식 연구)

  • Song, Eun-young;Lim, Ho-sun
    • The Korean Fashion and Textile Research Journal
    • /
    • v.23 no.3
    • /
    • pp.380-389
    • /
    • 2021
  • This study aimed to reveal the perceptions and trends of digital fashion technology through an informational approach. A big data analysis was conducted after collecting the text shown in a web environment from April 2019 to April 2021. Key words were derived through text mining analysis and network analysis, and the structure of perception of digital fashion technology was identified. Using textoms, we collected 8144 texts after data refinement, conducted a frequency of emergence and central component analysis, and visualized the results with word cloud and N-gram. The frequency of appearance also generated matrices with the top 70 words, and a structural equivalent analysis was performed. The results were presented with network visualizations and dendrograms. Fashion, digital, and technology were the most frequently mentioned topics, and the frequencies of platform, digital transformation, and start-ups were also high. Through clustering, four clusters of marketing were formed using fashion, digital technology, startups, and augmented reality/virtual reality technology. Future research on startups and smart factories with technologies based on stable platforms is needed. The results of this study contribute to increasing the fashion industry's knowledge on digital fashion technology and can be used as a foundational study for the development of research on related topics.

Analysis of Descriptive Lecture Evaluation on Liberal Arts ICT utilization using Topic Modeling (토픽 모델링을 활용한 교양 ICT 활용과정 서술형 강의평가 분석)

  • Kim, HyoSook
    • Journal of Platform Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The purpose of this study is to identify factors in selecting the elective ICT utilization lecture and to find positive and negative elements of the lecture through conducting topic modeling analysis of text mining of the narrative lecture evaluation. In order to do so, from pre-processing of data, keyword frequency analysis to wordcloud visualization and topic modeling analysis have been conducted from 'reasons of selecting the lecture,' 'improvements to be made on the lecture,' and 'what I liked about the lecture' categories regarding the ICT utilization lecture which was opened in the second semester of 2019 at M University. The analysis results show that students mostly registered for the ICT utilization lecture at M University to obtain a certificate and the fact being certified and taking the lecture can be done simultaneously is a positive element of taking the lecture. On the other hand, negative element included inconvenience of the classroom setting environment.

  • PDF

Research Trend on Diabetes Mobile Applications: Text Network Analysis and Topic Modeling (당뇨병 모바일 앱 관련 연구동향: 텍스트 네트워크 분석 및 토픽 모델링)

  • Park, Seungmi;Kwak, Eunju;Kim, Youngji
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.170-179
    • /
    • 2021
  • Purpose: The aim of this study was to identify core keywords and topic groups in the 'Diabetes mellitus and mobile applications' field of research for better understanding research trends in the past 20 years. Methods: This study was a text-mining and topic modeling study including four steps such as 'collecting abstracts', 'extracting and cleaning semantic morphemes', 'building a co-occurrence matrix', and 'analyzing network features and clustering topic groups'. Results: A total of 789 papers published between 2002 and 2021 were found in databases (Springer). Among them, 435 words were extracted from 118 articles selected according to the conditions: 'analyzed by text network analysis and topic modeling'. The core keywords were 'self-management', 'intervention', 'health', 'support', 'technique' and 'system'. Through the topic modeling analysis, four themes were derived: 'intervention', 'blood glucose level control', 'self-management' and 'mobile health'. The main topic of this study was 'self-management'. Conclusion: While more recent work has investigated mobile applications, the highest feature was related to self-management in the diabetes care and prevention. Nursing interventions utilizing mobile application are expected to not only effective and powerful glycemic control and self-management tools, but can be also used for patient-driven lifestyle modification.

Evaluating AI Techniques for Blind Students Using Voice-Activated Personal Assistants

  • Almurayziq, Tariq S;Alshammari, Gharbi Khamis;Alshammari, Abdullah;Alsaffar, Mohammad;Aljaloud, Saud
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The present study was based on developing an AI based model to facilitate the academic registration needs of blind students. The model was developed to enable blind students to submit academic service requests and tasks with ease. The findings from previous studies formed the basis of the study where functionality gaps from the literary research identified by blind students were utilized when the system was devised. Primary simulation data were composed based on several thousand cases. As such, the current study develops a model based on archival insight. Given that the model is theoretical, it was partially applied to help determine how efficient the associated AI tools are and determine how effective they are in real-world settings by incorporating them into the portal that institutions currently use. In this paper, we argue that voice-activated personal assistant (VAPA), text mining, bag of words, and case-based reasoning (CBR) perform better together, compared with other classifiers for analyzing and classifying the text in academic request submission through the VAPA.

Association Modeling on Keyword and Abstract Data in Korean Port Research

  • Yoon, Hee-Young;Kwak, Il-Youp
    • Journal of Korea Trade
    • /
    • v.24 no.5
    • /
    • pp.71-86
    • /
    • 2020
  • Purpose - This study investigates research trends by searching for English keywords and abstracts in 1,511 Korean journal articles in the Korea Citation Index from the 2002-2019 period using the term "Port." The study aims to lay the foundation for a more balanced development of port research. Design/methodology - Using abstract and keyword data, we perform frequency analysis and word embedding (Word2vec). A t-SNE plot shows the main keywords extracted using the TextRank algorithm. To analyze which words were used in what context in our two nine-year subperiods (2002-2010 and 2010-2019), we use Scattertext and scaled F-scores. Findings - First, during the 18-year study period, port research has developed through the convergence of diverse academic fields, covering 102 subject areas and 219 journals. Second, our frequency analysis of 4,431 keywords in 1,511 papers shows that the words "Port" (60 times), "Port Competitiveness" (33 times), and "Port Authority" (29 times), among others, are attractive to most researchers. Third, a word embedding analysis identifies the words highly correlated with the top eight keywords and visually shows four different subject clusters in a t-SNE plot. Fourth, we use Scattertext to compare words used in the two research sub-periods. Originality/value - This study is the first to apply abstract and keyword analysis and various text mining techniques to Korean journal articles in port research and thus has important implications. Further in-depth studies should collect a greater variety of textual data and analyze and compare port studies from different countries.