• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.027 seconds

Topic Modeling of Suicide Papers using Text Mining (텍스트마이닝을 활용한 자살 관련 논문 토픽 모델링)

  • Cho, Kyoung Won;Kim, Ha-young;Kim, Mi-ri;Woo, Young Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.275-277
    • /
    • 2019
  • The purpose of this study is to classify the topics related to the suicide papers published so far and to identify the proporations of the main topics and the trends of the topics over the past 20 years. For this purpose, a text mining technique used in big data analysis was used as a data base of the Korean Journal of Citation Index (KCI), where information sharing about the papers is most active. This study, which grasps the trends of suicide related research according to the changes of the times, will become a basic data for establishing a strategy to adapt the academic direction related to suicide in the future.

  • PDF

Analysis of Real Estate Market Trend Using Text Mining and Big Data (빅데이터와 텍스트마이닝을 이용한 부동산시장 동향분석)

  • Chun, Hae-Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2019
  • This study is on the trend of real estate market using text mining and big data. The data were collected through internet news posted on Naver from August 2016 to August 2017. As a result of TF-IDF analysis, the frequency was high in the order of housing, sale, household, real estate market, and region. Many words related to policies such as loan, government, countermeasures, and regulations were extracted, and the region - related words appeared the most frequently in Seoul. The combination of the words related to the region showed that the frequencies of 'Seoul - Gangnam', 'Seoul - Metropolitan area', 'Gangnam - reconstruction' and 'Seoul - reconstruction' appeared frequently. It can be seen that the people's interest and expectation about the reconstruction of Gangnam area is high.

Text Mining Analysis of the Online Counseling Contents of Nursery School Teachers (텍스트 마이닝을 활용한 어린이집교사 온라인 상담의 내용분석)

  • Jeon, Ji Won;Lim, Sun Ah;Jung, Yunhee
    • Korean Journal of Childcare and Education
    • /
    • v.16 no.6
    • /
    • pp.253-272
    • /
    • 2020
  • Objective: This study aimed to analyze the counseling contents of daycare center teachers by using text mining and semantic network analysis methods to find the necessary support directions for daycare teachers and to improve the quality of child-care. Methods: Five hundred thirteen cases of counseling recorded on the open bulletin board of online counseling (Naver Bands for Nursery Teacher Counseling) were collected, and frequency analysis, centrality solidarity analysis, and machine learning-based topic analysis were conducted using the NetMiner4.3 program. Results: First, 'teacher-to-child ratio' was highest in the frequency. Second, 'colleagues' were all high in all centrality analysis. Third, machine learning-based topical analysis shows that the topics were categorized as subjects about 'childcare and education', 'working environment that supports professional development' and 'working condition', and among them, 'first-time teacher concerns' accounted for 44% of the total counseling content. Conclusion/Implications: This study implied that it is necessary to provide high-quality child-care and education to infants by lowering the 'teacher-to-child ratio', and a systematic program is needed to help improve effective communication skills in interpersonal relationships such as between parents, fellow teachers, and principals. In addition, self-development and efforts to improve teachers expertise should be prioritized in order to improve infant care quality and quality of teachers.

Customer Value Proposition Methodology Using Text Mining of Online Customer Reviews (온라인 고객 리뷰에 대한 텍스트마이닝을 활용한 고객가치제안 방법)

  • Han, Young-Kyung;Kim, Chul-Min;Park, Kwang-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.85-97
    • /
    • 2021
  • Online consumer activities have increased considerably since the COVID-19 outbreak. For the products and services which have an impact on everyday life, online reviews and recommendations can play a significant role in consumer decision-making processes. Thus, to better serve their customers, online firms are required to build online-centric marketing strategies. Especially, it is essential to define core value of customers based on the online customer reviews and to propose these values to their customers. This study discovers specific perceived values of customers in regard to a certain product and service, using online customer reviews and proposes a customer value proposition methodology which enables online firms to develop more effective marketing strategies. In order to discover customers value, the methodology employs a text-mining technology, which combines a sentiment analysis and topic modeling. By the methodology, customer emotions and value factors can be more clearly defined. It is expected that online firms can better identify value elements of their respective customers, provide appropriate value propositions, and thus gain sustainable competitive advantage.

Analysis of speech in game marketing video using text mining techniques (텍스트 마이닝 기법을 이용한 게임 마케팅 비디오에서의 스피치 분석)

  • Lee, Yeokyung;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.147-159
    • /
    • 2022
  • Nowadays, various social media platforms are widely spread and people closely use such platforms in daily life. By doing so, social influencers with a large number of subscribers, views, and comments have huge impact in our society. Following this trend, many companies are actively using influencers for marketing purpose to promote their products and services. In this study, we extract the speeches of influencers from videos for game marketing and analyze them using various text mining techniques. In the analysis, we distinguish game videos leading to successful marketing and failed marketing, and we explore and compare the linguistic features of the influencers for successful and failed marketings.

COVID-19 recommender system based on an annotated multilingual corpus

  • Barros, Marcia;Ruas, Pedro;Sousa, Diana;Bangash, Ali Haider;Couto, Francisco M.
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.24.1-24.7
    • /
    • 2021
  • Tracking the most recent advances in Coronavirus disease 2019 (COVID-19)-related research is essential, given the disease's novelty and its impact on society. However, with the publication pace speeding up, researchers and clinicians require automatic approaches to keep up with the incoming information regarding this disease. A solution to this problem requires the development of text mining pipelines; the efficiency of which strongly depends on the availability of curated corpora. However, there is a lack of COVID-19-related corpora, even more, if considering other languages besides English. This project's main contribution was the annotation of a multilingual parallel corpus and the generation of a recommendation dataset (EN-PT and EN-ES) regarding relevant entities, their relations, and recommendation, providing this resource to the community to improve the text mining research on COVID-19-related literature. This work was developed during the 7th Biomedical Linked Annotation Hackathon (BLAH7).

Media coverage of the conflicts over the 4th Industrial Revolution in the Republic of Korea from 2016 to 2020: a text-mining approach

  • Yang, Jiseong;Kim, Byungjun;Lee, Wonjae
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.2
    • /
    • pp.202-221
    • /
    • 2022
  • The media has depicted an abrupt socio-technological change in the Republic of Korea with the 4th Industrial Revolution. Because technologies cannot realize their potential without social acceptance, studying conflicts incurred by such a change is imperative. However, little literature has focused on conflicts caused by technologies. Therefore, the current study investigated media coverage regarding conflicts related to the 4th Industrial Revolution from 2016 to 2020 in the Republic of Korea, applying text-mining techniques. We found that the overall amount and coverage pattern conforms to the issue attention cycle. Also, the three major topics ("SMEs & Startups," "Mobility Conflict," and "Human & Technology") indicate quarrels between conflicting social entities. Moreover, the temporal change in media coverage implies the political use of the term rather than technological. However, we also found the media's deliberative discussion on the socio-technological impact. This study is significant because we expanded the discussion on media coverage of technologies to the realm of social conflicts. Furthermore, we explored the news articles of the recent five years with a text-mining approach that enhanced the objectivity of the research.

Text-mining based Cause Analysis of Accidents at Workplaces in Korea (텍스트 마이닝 기법을 활용한 우리나라 산업재해의 원인분석)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • The analysis of the causes of accidents in workplaces where machines and tools are used is essential to improve the effectiveness and efficiency of safety prevention policies in places of employment in Korea. The causes of workplace accidents are not fully understood mainly due to difficulties in analyzing available descriptive information. This study focuses on the automated accident cause analysis in workplaces based on the accident abstracts found in industrial accident reports written in an unstructured descriptive format. The method proposed in this paper is based on text data mining and uses the keyword search function of Excel software to automate the analysis. The analysis results indicate that the primary reason for the frequency of accidents is related to technical aspects at a stage in which dangerous situations occur in the workplace. Accidents due to managerial causes are typically observed when danger exists in the workplace; however, managerial actions play a more important role in reducing accident severity. A small company tends to use unsafe machines and devices, leading to further accidents due to technical causes, whereas managerial causes are more conspicuous as the company grows. To preclude the occurrence of accidents due to inadequate knowledge, the implementation of safety management and the provision of safety education to elderly workers at the early stage of their employment are particularly important for small companies with less than 100 workers.

Analysis of VR Game Trends using Text Mining and Word Cloud -Focusing on STEAM review data- (텍스트마이닝과 워드 클라우드를 활용한 VR 게임 트렌드 분석 -스팀(steam) 리뷰 데이터를 중심으로-)

  • Na, Ji Young
    • Journal of Korea Game Society
    • /
    • v.22 no.1
    • /
    • pp.87-98
    • /
    • 2022
  • With the development of fourth industrial revolution-related technology and increased demands for non-face-to-face services, VR games attract attention. This study collected VR game review data from an online game platform STEAM and analyzed chronical trends using text mining and word cloud analysis. According to the results, experience and perceived cost were major trends from 2016 to 2017, increased demands for FPS and rhythm games were from 2018 to 2019, and story and immersion were from 2020 to 2021. It aims to contribute to expanding the base of VR games by identifying the keywords VR users take interest in by period.

A Study on the Analysis of Accident Types in Public and Private Construction Using Web Scraping and Text Mining (웹 스크래핑과 텍스트마이닝을 이용한 공공 및 민간공사의 사고유형 분석)

  • Yoon, Younggeun;Oh, Taekeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.729-734
    • /
    • 2022
  • Various studies using accident cases are being conducted to identify the causes of accidents in the construction industry, but studies on the differences between public and private construction are insignificant. In this study, web scraping and text mining technologies were applied to analyze the causes of accidents by order type. Through statistical analysis and word cloud analysis of more than 10,000 structured and unstructured data collected, it was confirmed that there was a difference in the types and causes of accidents in public and private construction. In addition, it can contribute to the establishment of safety management measures in the future by identifying the correlation between major accident causes.