To get more natural synthetic speech generated by a Korean TTS (Text-To-Speech) system, we have to know all the possible prosodic rules in Korean spoken language. We should find out these rules from linguistic, phonetic information or from real speech. In general, all of these rules should be integrated into a prosody-generation algorithm in a TTS system. But this algorithm cannot cover up all the possible prosodic rules in a language and it is not perfect, so the naturalness of synthesized speech cannot be as good as we expect. ANNs (Artificial Neural Networks) can be trained to learn the prosodic rules in Korean spoken language. To train and test ANNs, we need to prepare the prosodic patterns of all the phonemic segments in a prosodic corpus. A prosodic corpus will include meaningful sentences to represent all the possible prosodic rules. Sentences in the corpus were made by picking up a series of words from the list of PB (phonetically Balanced) isolated words. These sentences in the corpus were read by speakers, recorded, and collected as a speech database. By analyzing recorded real speech, we can extract prosodic pattern about each phoneme, and assign them as target and test patterns for ANNs. ANNs can learn the prosody from natural speech and generate prosodic patterns of the central phonemic segment in phoneme strings as output response of ANNs when phoneme strings of a sentence are given to ANNs as input stimuli.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.4
/
pp.148-155
/
2020
This study investigated learners' perceptions of using self-generated listening materials based on Text to Speech. After taking an online training session to learn how to make listening materials for extensive listening practice outside the classroom, the learners were engaged in practice with self-generated listening materials for 10 weeks in a self-directed way. The results show that a majority of the learners found the TTS-based listening materials helpful to reduce anxiety toward listening and enhance self-confidence and motivation, with a positive effect on improving their listening ability. The learners' general satisfaction can be attributed to some beneficial features of TTS-based listening material, including freedom to choose what they want to learn, convenient accessibility to the material, availability of various native speakers' voices, and novelty of digital tools. This suggests that TTS-based digital listening materials can be a useful educational tool to support learners' self-directed listening practice outside the classroom in EFL settings.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.7
/
pp.699-707
/
2020
With the development of deep learning technology, voice processing-related technology is applied to various areas, such as STT (Speech To Text), TTS (Text To Speech), ChatBOT, and intelligent personal assistant. In particular, the STT is a voice-based, relevant service that changes human languages to text, so it can be applied to various IT related services. Recently, many places, such as general private enterprises and public institutions, are attempting to introduce the relevant technology. On the other hand, in contrast to the general IT solution that can be evaluated quantitatively, the standard and methods of evaluating the accuracy of the STT engine are ambiguous, and they do not consider the characteristics of the Korean language. Therefore, it is difficult to apply the quantitative evaluation standard. This study aims to provide a guide to an evaluation of the STT engine conversion performance based on the characteristics of the Korean language, so that engine manufacturers can perform the STT conversion based on the characteristics of the Korean language, while the market could perform a more accurate evaluation. In the experiment, a 35% more accurate evaluation could be performed compared to the existing methods.
In text-to-speech systems, the conversion of text into prosodic parameters is necessarily composed of three steps. These are the placement of prosodic boundaries. the determination of segmental durations, and the specification of fundamental frequency contours. Prosodic boundaries. as the most important and basic parameter. affect the estimation of durations and fundamental frequency. Break prediction is an important step in text-to-speech systems as break indices (BIs) have a great influence on how to correctly represent prosodic phrase boundaries, However. an accurate prediction is difficult since BIs are often chosen according to the meaning of a sentence or the reading style of the speaker. In Japanese, the prediction of an accentual phrase boundary (APB) and major phrase boundary (MPB) is particularly difficult. Thus, this paper presents a method to complement the prediction errors of an APB and MPB. First, we define a subtle BI in which it is difficult to decide between an APB and MPB clearly as a variable break (VB), and an explicit BI as a fixed break (FB). The VB is chosen using the classification and regression tree, and multiple prosodic targets in relation to the pith and duration are then generated. Finally. unit-selection is conducted using multiple prosodic targets. In the MOS test result. the original speech scored a 4,99. while proposed method scored a 4.25 and conventional method scored a 4.01. The experimental results show that the proposed method improves the naturalness of synthesized speech.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.1
/
pp.143-150
/
1990
In this paper, a rule-based method for improving the intelligibility of synthetic speech is proposed. A 12-pole linear prediction coding method is used to model syllable speech signals. A syllable concatenation rule for pause and frame rejection between syllables is developed to improve the naturalness of the synthetic speech. In addition, phonoligical structure transform rule and prosody rule are applied to the synthetic speech by LPC. The illustrative results demonstrate that the synthetic speech obtained by applying these rules has better naturalness than the synthetic speech by LPC.
In this paper, we propose a language modeling approach to improve the performance of a large vocabulary continuous speech recognition system. The proposed approach is based on the active learning framework that helps to select a text corpus from a plenty amount of text data required for language modeling. The perplexity is used as a measure for the corpus selection in the active learning. From the recognition experiments on the task of continuous Korean speech, the speech recognition system employing the language model by the proposed language modeling approach reduces the word error rate by about 6.6 % with less computational complexity than that using a language model constructed with randomly selected texts.
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.35-38
/
1995
Text-to-speech 시스템은 텍스트를 입력으로 받아 텍스트와 일치하는 음성을 출력하는 시스템으로, 인간이 자신의 모국어로 텍스트를 읽는 것과 비슷한 수준의 음성을 출력하는 데 목적이 있다. 한국어의 각 단어들은 한 단어 내에 있는 형태소들 사이에 음운 변동 현상을 일으켜 쓰여진 형태와 다르게 발음된다. 그러므로 한국어 텍스트를 자연스럽게 발음하기 위해서는 음운 변동 현상을 효율적으로 처리할 수 있어야 한다. 한국어에서 음운 변동을 일으키는 규칙은 여러 가지이고, 정확한 발음을 위해서는 이러한 규칙들이 차례대로 적용되어져야 한다. 따라서 본 논문에서는 이러한 한국어의 발음상의 특성을 고려하여 two-level 모델에 기반한 음운 변동 시스템을 구현한다.
The Transactions of the Korea Information Processing Society
/
v.13
no.4
/
pp.174-180
/
2024
In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models. It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classification performance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivative models, known for their superior performance in the field of natural language processing, to select the optimal model for effective feature extraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstanding performance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that the inclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments show that the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningful performance improvements in complex natural language processing tasks such as emotion classification.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.8
/
pp.3992-3998
/
2013
This paper is related to the method of adding a emotional speech corpus to a high-quality large corpus based speech synthesizer, and generating various synthesized speech. We made the emotional speech corpus as a form which can be used in waveform concatenated speech synthesizer, and have implemented the speech synthesizer that can be generated various synthesized speech through the same synthetic unit selection process of normal speech synthesizer. We used a markup language for emotional input text. Emotional speech is generated when the input text is matched as much as the length of intonation phrase in emotional speech corpus, but in the other case normal speech is generated. The BIs(Break Index) of emotional speech is more irregular than normal speech. Therefore, it becomes difficult to use the BIs generated in a synthesizer as it is. In order to solve this problem we applied the Variable Break[3] modeling. We used the Japanese speech synthesizer for experiment. As a result we obtained the natural emotional synthesized speech using the break prediction module for normal speech synthesize.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.