In this paper, we propose the speaker identification system that uses vowel that has speaker's characteristic. System is divided to speech feature extraction part and speaker identification part. Speech feature extraction part extracts speaker's feature. Voiced speech has the characteristic that divides speakers. For vowel extraction, formants are used in voiced speech through frequency analysis. Vowel-a that different formants is extracted in text. Pitch, formant, intensity, log area ratio, LP coefficients, cepstral coefficients are used by method to draw characteristic. The cpestral coefficients that show the best performance in speaker identification among several methods are used. Speaker identification part distinguishes speaker using Neural Network. 12 order cepstral coefficients are used learning input data. Neural Network's structure is MLP and learning algorithm is BP (Backpropagation). Hidden nodes and output nodes are incremented. The nodes in the incremental learning neural network are interconnected via weighted links and each node in a layer is generally connected to each node in the succeeding layer leaving the output node to provide output for the network. Though the vowel extract and incremental learning, the proposed system uses low learning data and reduces learning time and improves identification rate.
The purpose of this paper is to examine some of the theories concerning socioaffective strategies, to analyze the dialogues of the students negotiating for meaning of a reading material and to suggest some implications of socioaffective strategies for teaching reading. The examination of the theories - the interaction hypothesis and the sociocultural theory - suggest that the use of socioaffective strategies facilitates more effective understanding of information that is to be found. distributed, and taken in among the participants. The discourse analyses of the students' interaction in a Korean college English reading class show ample evidence of the use of socioaffective strategies that helped them understand the meaning of a text. However, the analyses show that the strategies are mostly used to ask questions concerning the meaning of clauses. Only few analytical questions are raised for some structural and pragmatical features in the text which are crucial to the understanding of its meaning. Imbalance also exists in the types of the questions used by the participants. The analyses indicate that, instead of negotiating more interactively, the students tend to rely upon a more advanced student when they face difficult English sentences. Therefore as a conclusion this paper emphasizes the importance of teaching socioaffective strategies to help students to help themselves to become more cooperative, independent and analytical in reading English texts.
It is often assumed that text regions in images are characterized by some distinctive or characteristic spatial frequencies. This feature is highly intuitive, and thus appealing as much. We propose a method of detecting horizontal texts in natural scene images. It is based on the use of two features that can be employed separately or in succession: the frequency of edge pixels across vertical and horizontal scan lines, and the fundamental frequency in the Fourier domain. We confirmed that the frequency features are language independent. Also addressed is the detection of quadrilaterals or approximate rectangles using Hough transform. Since texts that is meaningful to many viewers usually appear within rectangles with colors in high contrast to the background. Hence it is natural to assume the detection rectangles may be helpful for locating desired texts correctly in natural outdoor scene images.
This study explores the social phenomenon of the universalization of one-person households through a literature analysis and text mining in order to explore a future direction for Home Economics Education(HEE) development in the one-person household era. From 2010 to 2018, texts from newspaper articles and book content of one-person households were analyzed through R program. The results of the study are as follows. In order to develop students' competency to live a happy life in the one-person household era, it is necessary to: (1) expand the preemptive and collaborative research of HEE, (2) develop and operate a curriculum to raise the living competency to live alone, (3) expand opportunities for secondary school students as well as off-campus youth, middle-aged, and elderly students, and (4) develop various HEE's elective curriculum focusing on the ability to live as one-person household. Also, (5) in order to overcome the psychological and social poverty and isolation of one-person households, HEE should strengthen the learner's ability to form relationships through self-esteem, care of others, community life, communication and conflict resolution education. In conclusion, HEE's independent living competency, relationship formation competency, and practical problem solving competency are all necessary competencies to live in one-person households. In this study, it is meaningful to suggest a future direction for HEE and to use new research methods such as word cloud techniques in the absence of HEE's previous research in relation to the increase of one-person households.
Journal of Information Science Theory and Practice
/
v.8
no.4
/
pp.67-86
/
2020
Information need has been one of the main motivations for a person using a search engine. Queries can represent very different information needs. Ironically, a query can be a poor representation of the information need because the user can find it difficult to express the information need. Query Expansion (QE) is being popularly used to address this limitation. While QE can be considered as a language-independent technique, recent findings have shown that in certain cases, language plays an important role. Arabic is a language with a particularly large vocabulary rich in words with synonymous shades of meaning and has high morphological complexity. This paper, therefore, provides a review on QE for Arabic information retrieval, the intention being to identify the recent state-of-the-art of this burgeoning area. In this review, we primarily discuss statistical QE approaches that include document analysis, search, browse log analyses, and web knowledge analyses, in addition to the semantic QE approaches, which use semantic knowledge structures to extract meaningful word relationships. Finally, our conclusion is that QE regarding the Arabic language is subjected to additional investigation and research due to the intricate nature of this language.
Pak, Doohyun;Hwang, Mingyu;Lee, Minji;Woo, Sung-Il;Hahn, Sang-Woo;Lee, Yeon Jung;Hwang, Jaeuk
Korean Journal of Biological Psychiatry
/
v.27
no.1
/
pp.18-26
/
2020
Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.
Journal of Wellbeing Management and Applied Psychology
/
v.2
no.2
/
pp.39-45
/
2019
The purpose of this study is to solve the problem of revision or abbreviation of questionnaires based on the previous studies suggested by many existing empirical studies. In addition, this study aims to provide the theoretical basis of the research method which has been variously approached since it presents the methodology that can directly measure the research object. For this purpose, this study proposed a more elaborate analysis method using the differences in perception of individuals who are interested in cognitive research. Specifically, the perception gap(D) can be used as an independent variable, a dependent variable, and a moderating variable. And this study suggested an effective research approach using the measurement of perception difference. The difference of perception suggested that it can be used as a measure to overcome the limitations of existing researches used it as independent variables or mediating variables that measure only one factor of expectation and performance or importance and satisfaction. In addition, it is highly likely that various analyzes on the perception differences, which are the result of measuring target factors for the same person, will be quite effective in the situation where follow-up of respondents is difficult. This study is expected to overcome various limitations reported by empirical studies such as scale utilization problem and follow-up survey difficulty. In future research, it was expected that the limitation of the factor derivation process in the research approach could be complemented by web crawling and text mining of big data analysis.
Environmental education in Korea has been emphasized since the Fourth National Curriculum. The Environment curriculum became independent as 'Environment' for middle school and 'Environmental Science' for high school were set as independent subjects upon the Sixth National Curriculum of Korea. And the Enviroment Textbook for middle school was published by the Ministry of Education of Korea. The purpose of this study is to analyze environment textbook for middle school focusing on the organization, the format, questions and illustrations. It was expected that the results of this study could be used by Environment textbook developers. According to the analysis of 'Environment',on the organization, the textbook was consisted of 219 pages and 22 units. A unit was consisted of many subunits and activities. On the content of the textbook, the objectives of subunits stressed more on explanation form than on exemplification form. On the questions, most of them were in <activities> and the objectives of questions stressed on the presentation of the contents. The specific aspect referring results, cause, and judgement, etc. were vary rarely checked. The questions seemed as good, because questions were mostly pertinent to the what to ask, and had a good connection to the main text. By the analysis of illustration, illustrations were mostly functioned as supportive and rarely as decorative, Most of them were photographs and printed all in black-and-white pictures.
In this paper, we propose a new web image caption extraction method considering the positional relation between a caption and an image and the lexical similarity between a caption and the main text containing the caption. The positional relation between a caption and an image represents how the caption is located with respect to the distance and the direction of the corresponding image. The lexical similarity between a caption and the main text indicates how likely the main text generates the caption of the image. Compared with previous image caption extraction approaches which only utilize the independent features of image and captions, the proposed approach can improve caption extraction recall rate, precision rate and 28% F-measure by including additional features of positional relation and lexical similarity.
Lee, Sle;Won, Jiyoon;Kim, Seoyeon;Park, Su Jeong;Lee, Hyangsook
Korean Journal of Acupuncture
/
v.34
no.4
/
pp.251-264
/
2017
Objectives : To identify the prevalence and types of spin in randomised controlled trials(RCTs) of obesity with statistically non-significant results for primary outcomes to provide adequate reporting directions. Methods : Spin is specific reporting strategy that could lead the readers to misinterpret the results of RCTs. RCTs on obesity with statistically non-significant primary outcomes published from July 2015 to June 2016 were retrieved from PubMed. All included RCTs were classified into 3 intervention categories. The identification and classification of spin in the included articles was performed by two independent researchers. Results : Among 46 RCTs with statistically non-significant primary outcomes, 32 studies were assessed as having at least one spin in title, abstract or main text. Of these, 9 articles were on complementary and alternative medicine, 7 on western medicine and 16 on dietary supplement and exercise. The frequency of spin among the types of interventions was similar. The most common type of spin was 'focusing on statistical significance within-group comparison' in results section of abstract and main text, and 'focusing only on treatment effectiveness with no consideration of statistical significance' in conclusion section of abstract and main text. Studies where random sequence generation was appropriately done was less likely to have spin. Conclusions : As a majority of obesity RCTs have spin, researchers should pay more attention to adequately interpreting and reporting statistically non-significant results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.