• Title/Summary/Keyword: Text detection

Search Result 402, Processing Time 0.035 seconds

An Enhanced Text-Prompt Speaker Recognition Using DTW (DTW를 이용한 향상된 문맥 제시형 화자인식)

  • 신유식;서광석;김종교
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.86-91
    • /
    • 1999
  • This paper presents the text-prompt method to overcome the weakness of text-dependent and text-independent speaker recognition. Enhanced dynamic time warping for speaker recognition algorithm is applied. For the real-time processing, we use a simple algorithm for end-point detection without increasing computational complexity. The test shows that the weighted-cepstrum is most proper for speaker recognition among various speech parameters. As the experimental results of the proposed algorithm for three prompt words, the speaker identification error rate is 0.02%, and when the threshold is set properly, false rejection rate is 1.89%, false acceptance rate is 0.77% and verification total error rate is 0.97% for speaker verification.

  • PDF

User Authentication Based on Keystroke Dynamics of Free Text and One-Class Classifiers (자유로운 문자열의 키스트로크 다이나믹스와 일범주 분류기를 활용한 사용자 인증)

  • Seo, Dongmin;Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.4
    • /
    • pp.280-289
    • /
    • 2016
  • User authentication is an important issue on computer network systems. Most of the current computer network systems use the ID-password string match as the primary user authentication method. However, in password-based authentication, whoever acquires the password of a valid user can access the system without any restrictions. In this paper, we present a keystroke dynamics-based user authentication to resolve limitations of the password-based authentication. Since most previous studies employed a fixed-length text as an input data, we aims at enhancing the authentication performance by combining four different variable creation methods from a variable-length free text as an input data. As authentication algorithms, four one-class classifiers are employed. We verify the proposed approach through an experiment based on actual keystroke data collected from 100 participants who provided more than 17,000 keystrokes for both Korean and English. The experimental results show that our proposed method significantly improve the authentication performance compared to the existing approaches.

Effects of selenate and L-glutamate on the growth of Mycobacterium tuberculosis complex

  • Kim, Seung-Cheol;Kim, Jin-Sook;Monoldorova, Sezim;Cho, Jang-Eun;Hong, Minsun;Jeon, Bo-Young
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.239-244
    • /
    • 2018
  • Mycobacterium tuberculosis (M. tuberculosis) complex is the causative agent of tuberculosis (TB) in humans and bovine TB in mammalian hosts and grows very slowly. Selenium is a central molecule in nitrogen metabolism and an essential ingredient for all living cells and glutamic acid. The effects of selenium on the growth of M. tuberculosis, a representative slow-growing Mycobacterium species, were investigated and measured using the BacT Alert 3D System (MB/BacT System). Sodium selenate, at a final concentration of $10{\mu}g/mL$, reduced the average time-to detection (TTD) to 197.2 hours (95% confidence interval (CI), 179.6~214.8) from 225.1 hours (95% CI, 218~232.0) in the control culture media (P<0.05). The TTD did not increase with $\text\tiny{L}$-glutamate concentrations up to $10{\mu}g/mL$, but a significant reduction in the TTD was observed in the presence of $20{\mu}g/mL$ ${\text\tiny{L}}$-glutamate in culture media (P<0.05). In conclusion, selenate and ${\text\tiny{L}}$-glutamate enhance the growth of M. tuberculosis.

Unified Psycholinguistic Framework: An Unobtrusive Psychological Analysis Approach Towards Insider Threat Prevention and Detection

  • Tan, Sang-Sang;Na, Jin-Cheon;Duraisamy, Santhiya
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.1
    • /
    • pp.52-71
    • /
    • 2019
  • An insider threat is a threat that comes from people within the organization being attacked. It can be described as a function of the motivation, opportunity, and capability of the insider. Compared to managing the dimensions of opportunity and capability, assessing one's motivation in committing malicious acts poses more challenges to organizations because it usually involves a more obtrusive process of psychological examination. The existing body of research in psycholinguistics suggests that automated text analysis of electronic communications can be an alternative for predicting and detecting insider threat through unobtrusive behavior monitoring. However, a major challenge in employing this approach is that it is difficult to minimize the risk of missing any potential threat while maintaining an acceptable false alarm rate. To deal with the trade-off between the risk of missed catches and the false alarm rate, we propose a unified psycholinguistic framework that consolidates multiple text analyzers to carry out sentiment analysis, emotion analysis, and topic modeling on electronic communications for unobtrusive psychological assessment. The user scenarios presented in this paper demonstrated how the trade-off issue can be attenuated with different text analyzers working collaboratively to provide more comprehensive summaries of users' psychological states.

Violation Pattern Analysis for Good Manufacturing Practice for Medicine using t-SNE Based on Association Rule and Text Mining (우수 의약품 제조 기준 위반 패턴 인식을 위한 연관규칙과 텍스트 마이닝 기반 t-SNE분석)

  • Jun-O, Lee;So Young, Sohn
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.717-734
    • /
    • 2022
  • Purpose: The purpose of this study is to effectively detect violations that occur simultaneously against Good Manufacturing Practice, which were concealed by drug manufacturers. Methods: In this study, we present an analysis framework for analyzing regulatory violation patterns using Association Rule Mining (ARM), Text Mining, and t-distributed Stochastic Neighbor Embedding (t-SNE) to increase the effectiveness of on-site inspection. Results: A number of simultaneous violation patterns was discovered by applying Association Rule Mining to FDA's inspection data collected from October 2008 to February 2022. Among them there were 'concurrent violation patterns' derived from similar regulatory ranges of two or more regulations. These patterns do not help to predict violations that simultaneously appear but belong to different regulations. Those unnecessary patterns were excluded by applying t-SNE based on text-mining. Conclusion: Our proposed approach enables the recognition of simultaneous violation patterns during the on-site inspection. It is expected to decrease the detection time by increasing the likelihood of finding intentionally concealed violations.