• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.028 seconds

Comparison of Student′s Clinical Competency in Different Instructional Methods for Fundamentals of Nursing Practicum (기본간호학 실습교육방법에 따른 학생들의 간호수행능력의 비교)

  • 유문숙;유일영;박연옥;손연정
    • Journal of Korean Academy of Nursing
    • /
    • v.32 no.3
    • /
    • pp.327-335
    • /
    • 2002
  • The main purpose of this study was to compare the clinical competency in different instructio nal methods for funda- mentals of nursing practicum, standardized patients methods story as text method ,and traditional lecture/model method. Method: The study was designed as a quasi-experimental, nonequivalent control group post-test design with three separate classes of sophomore students attending fundamentals of nursing classes at one baccaleureate nursing school located in metropoli tan Seoul area. Control group was taught by traditiona lecture/ model method and two experimental groups were taught by standardized patients method and story as text method. Data were collected from September, 1999 to June 2001. There were 36 students in the standardized patient method group, 38 students in story as text group, and 40 students in the control group. Data analysis was done using SPSS WINDOW 9.0. Result: The results showed that the standardized patients method and story as text method groups were significantly better in clinical judgement and communication skills than the traditional lecture/model method group. The standardized patients method group was significantly better in clinical nursing skills performance than two other groups. However, there was no significant difference among the three groups in student satisfaction. Conclusion: The standardized patients method is an effective in teaching clinical cometency for student nurses. It is necessary to explore more efficient way to develop standardized patients cases for wider areas of nursing education. Also, it is recommended to develop more research projects with many nursing programs.

Investigation on the Effect of Multi-Vector Document Embedding for Interdisciplinary Knowledge Representation

  • Park, Jongin;Kim, Namgyu
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.99-116
    • /
    • 2020
  • Text is the most widely used means of exchanging or expressing knowledge and information in the real world. Recently, researches on structuring unstructured text data for text analysis have been actively performed. One of the most representative document embedding method (i.e. doc2Vec) generates a single vector for each document using the whole corpus included in the document. This causes a limitation that the document vector is affected by not only core words but also other miscellaneous words. Additionally, the traditional document embedding algorithms map each document into only one vector. Therefore, it is not easy to represent a complex document with interdisciplinary subjects into a single vector properly by the traditional approach. In this paper, we introduce a multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. After introducing the previous study on multi-vector document embedding, we visually analyze the effects of the multi-vector document embedding method. Firstly, the new method vectorizes the document using only predefined keywords instead of the entire words. Secondly, the new method decomposes various subjects included in the document and generates multiple vectors for each document. The experiments for about three thousands of academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the multi-vector based method, we ascertained that the information and knowledge in complex documents can be represented more accurately by eliminating the interference among subjects.

Analysis of Nursing Start-up Trends Using Text Network Analysis (텍스트 네트워크를 활용한 간호창업 연구동향 고찰)

  • Kim, Juhang
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.359-367
    • /
    • 2020
  • The purpose of this study is to explore text data of nursing start-up. 55 literatures were extracted from MEDLINE, Embase and Cochrane Library Data BASE. Text network analysis applied by using python network program. Key words with highest frequency and degree centrality were 'business', 'care', 'nursing', 'healthcare', 'service'. Keywords with highest degree centrality were 'mission', 'vision', 'team'. Based on the results nursing entrepreneurship support should be provided to develop competitive nursing services reflecting the specificity and science of nursing, to strengthen business competencies essential for nursing entrepreneurship, to expand nursing expertise and to present role models. The result will serve a basement to development systematic educational program and theory in nursing start-up.

Financial Instruments Recommendation based on Classification Financial Consumer by Text Mining Techniques (비정형 데이터 분석을 통한 금융소비자 유형화 및 그에 따른 금융상품 추천 방법)

  • Lee, Jaewoong;Kim, Young-Sik;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.1-24
    • /
    • 2016
  • With the innovation of information technology, non-face-to-face robo advisor with high accessibility and convenience is spreading. The current robot advisor recommends appropriate investment products after understanding the investment propensity based on the structured data entered directly or indirectly by individuals. However, it is an inconvenient and obtrusive way for financial consumers to inquire or input their own subjective propensity to invest. Hence, this study proposes a way to deduce the propensity to invest in unstructured data that customers voluntarily exposed during consultation or online. Since prediction performance based on unstructured document differs according to the characteristics of text, in this study, classification algorithm optimized for the characteristic of text left by financial consumers is selected by performing prediction performance evaluation of various learning discrimination algorithms and proposed an intelligent method that automatically recommends investment products. User tests were given to MBA students. After showing the recommended investment and list of investment products, satisfaction was asked. Financial consumers' satisfaction was measured by dividing them into investment propensity and recommendation goods. The results suggest that the users high satisfaction with investment products recommended by the method proposed in this paper. The results showed that it can be applies to non-face-to-face robo advisor.

Relevant Analysis on User Choice Tendency of Intelligent Tourism Platform under the Background of Text mining

  • Liu, Zi-Yang;Liao, Kai;Guo, Zi-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.119-125
    • /
    • 2019
  • The purpose of this study is to find out the relevant factors of the choice tendency of tourism users to Intelligent Tourism platform through big data analysis, which will help enterprises to make accurate positioning and improvement according to user information feedback in the tourism market in the future, so as to gain the favor of users' choice and achieve long-term market competitiveness. This study takes the Intelligent Tourism platform as the independent variable and the user choice tendency as the dependent variable, and explores the related factors between the Intelligent Tourism platform and the user choice tendency. This study make use of text mining and R language text analysis, and uses SPSS and AMOS statistical analysis tools to carry out empirical analysis. According to the analysis results, the conclusions are as follows: service quality has a significant positive correlation with user choice tendency; service quality has a significant positive correlation with tourism trust; Tourism Trust has a significant positive correlation with user choice tendency; service quality has a significant positive correlation with user experience; user experience has a significant positive correlation with user choice tendency Positive correlation effect.

Analysis of LinkedIn Jobs for Finding High Demand Job Trends Using Text Processing Techniques

  • Kazi, Abdul Karim;Farooq, Muhammad Umer;Fatima, Zainab;Hina, Saman;Abid, Hasan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.223-229
    • /
    • 2022
  • LinkedIn is one of the most job hunting and career-growing applications in the world. There are a lot of opportunities and jobs available on LinkedIn. According to statistics, LinkedIn has 738M+ members. 14M+ open jobs on LinkedIn and 55M+ Companies listed on this mega-connected application. A lot of vacancies are available daily. LinkedIn data has been used for the research work carried out in this paper. This in turn can significantly tackle the challenges faced by LinkedIn and other job posting applications to improve the levels of jobs available in the industry. This research introduces Text Processing in natural language processing on datasets of LinkedIn which aims to find out the jobs that appear most in a month or/and year. Therefore, the large data became renewed into the required or needful source. This study thus uses Multinomial Naïve Bayes and Linear Support Vector Machine learning algorithms for text classification and developed a trained multilingual dataset. The results indicate the most needed job vacancies in any field. This will help students, job seekers, and entrepreneurs with their career decisions

A study on NLP Text Preprocessing for digital forensic investigation (디지털 포렌식 조사를 위한 NLP의 텍스트 전처리 연구)

  • Lee, Sung-won;Kim, Dohyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.189-191
    • /
    • 2022
  • In modern society, messenger services are necessary to communication with others, and criminals are no exception. In representative cases of Burning Sun Gate(2018) and NthRoom(2019), messenger data analysis was used as a smoking gun to solve these criminal cases. Therefore messenger text analytics is critical for the resolution of crimes in a modern environment. also, it takes a lot of time to analyze messenger data in the digital forensic investigation process, so researchers in text mining need to be more effective to respond with the current situation In this paper, we study various natural language preprocessing(NLP) methods according to the characteristics of instant messages to effectively proceed with NLP analysis on instant messengers.

  • PDF

A Study on Improvement of Image Classification Accuracy Using Image-Text Pairs (이미지-텍스트 쌍을 활용한 이미지 분류 정확도 향상에 관한 연구)

  • Mi-Hui Kim;Ju-Hyeok Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.561-566
    • /
    • 2023
  • With the development of deep learning, it is possible to solve various computer non-specialized problems such as image processing. However, most image processing methods use only the visual information of the image to process the image. Text data such as descriptions and annotations related to images may provide additional tactile and visual information that is difficult to obtain from the image itself. In this paper, we intend to improve image classification accuracy through a deep learning model that analyzes images and texts using image-text pairs. The proposed model showed an approximately 11% classification accuracy improvement over the deep learning model using only image information.

Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents (복합 문서의 의미적 분해를 통한 다중 벡터 문서 임베딩 방법론)

  • Park, Jongin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.19-41
    • /
    • 2019
  • According to the rapidly increasing demand for text data analysis, research and investment in text mining are being actively conducted not only in academia but also in various industries. Text mining is generally conducted in two steps. In the first step, the text of the collected document is tokenized and structured to convert the original document into a computer-readable form. In the second step, tasks such as document classification, clustering, and topic modeling are conducted according to the purpose of analysis. Until recently, text mining-related studies have been focused on the application of the second steps, such as document classification, clustering, and topic modeling. However, with the discovery that the text structuring process substantially influences the quality of the analysis results, various embedding methods have actively been studied to improve the quality of analysis results by preserving the meaning of words and documents in the process of representing text data as vectors. Unlike structured data, which can be directly applied to a variety of operations and traditional analysis techniques, Unstructured text should be preceded by a structuring task that transforms the original document into a form that the computer can understand before analysis. It is called "Embedding" that arbitrary objects are mapped to a specific dimension space while maintaining algebraic properties for structuring the text data. Recently, attempts have been made to embed not only words but also sentences, paragraphs, and entire documents in various aspects. Particularly, with the demand for analysis of document embedding increases rapidly, many algorithms have been developed to support it. Among them, doc2Vec which extends word2Vec and embeds each document into one vector is most widely used. However, the traditional document embedding method represented by doc2Vec generates a vector for each document using the whole corpus included in the document. This causes a limit that the document vector is affected by not only core words but also miscellaneous words. Additionally, the traditional document embedding schemes usually map each document into a single corresponding vector. Therefore, it is difficult to represent a complex document with multiple subjects into a single vector accurately using the traditional approach. In this paper, we propose a new multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. This study targets documents that explicitly separate body content and keywords. In the case of a document without keywords, this method can be applied after extract keywords through various analysis methods. However, since this is not the core subject of the proposed method, we introduce the process of applying the proposed method to documents that predefine keywords in the text. The proposed method consists of (1) Parsing, (2) Word Embedding, (3) Keyword Vector Extraction, (4) Keyword Clustering, and (5) Multiple-Vector Generation. The specific process is as follows. all text in a document is tokenized and each token is represented as a vector having N-dimensional real value through word embedding. After that, to overcome the limitations of the traditional document embedding method that is affected by not only the core word but also the miscellaneous words, vectors corresponding to the keywords of each document are extracted and make up sets of keyword vector for each document. Next, clustering is conducted on a set of keywords for each document to identify multiple subjects included in the document. Finally, a Multi-vector is generated from vectors of keywords constituting each cluster. The experiments for 3.147 academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the proposed multi-vector based method, we ascertained that complex documents can be vectorized more accurately by eliminating the interference among subjects.

Topic change monitoring study based on Blue House national petition using a control chart (관리도를 활용한 국민청원 토픽 모니터링 연구)

  • Lee, Heeyeon;Choi, Jieun;Lee, Sungim;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.795-806
    • /
    • 2021
  • Recently, as text data through online channels have become vast, there is a growing interest in research that summarizes and analyzes them. One of the fundamental analyses of text data is to extract potential topics. Although the researcher may read all the data and summarize the contents one by one, it is not easy to deal with large amounts of data. Blei and Lafferty (2007) and Blei et al. (2003) proposed topic modeling methods for extracting topics using a statistical model. Since the text data is generally collected over time, it is worthwhile to monitor the topic's changes. In this study, we propose a topic index based on the results of the topic model. In addition, a control chart, a representative tool for statistical process management, is applied to monitor the topic index over time. As a practical example, we use text data collected from Blue House National Petition boards between March 5, 2018, and March 5, 2020.