키워드 추출은 정보검색, 문서 분류, 요약, 주제탐지 등의 텍스트 마이닝 분야에서 기반이 되는 기술이다. 대용량 전자문서로부터 추출된 키워드들은 텍스트 마이닝을 위한 중요 속성으로 활용되어 문서 브라우징, 주제탐지, 자동분류, 정보검색 시스템 등의 성능을 높이는데 기여한다. 본 논문에서는 인터넷 포털 사이트에 게재되는 대용량 뉴스문서집합을 대상으로 키워드 추출을 수행하여 분야별 주제를 제시할 수 있는 키워드를 추출하는 새로운 기법을 제안한다. 기본적으로 키워드 추출을 위해 기존 TF-IDF 모델을 고찰, 이것의 6가지 변형식을고안하여 이를 기반으로 각 분야별 후보 키워드를 추출한다. 또한 분야별로 추출된 단어들의 분야간 교차비교분석을 통해 불용어 수준의 의미 없는 단어를 제거함으로써 그 성능을 높인다. 제안 기법의 효용성을 입증하기 위해 한글 뉴스 기사 문서에서 추출한 키워드의 질을 비교하였으며, 또한 주제 변화를 탐지하기 위해 시간에 따른 키워드 집합의 변화를 보인다.
Natural language processing (NLP) is an emerging research area in which we study how machines can be used to perceive and alter the text written in natural languages. We can perform different tasks on natural languages by analyzing them through various annotational tasks like parsing, chunking, part-of-speech tagging and lexical analysis etc. These annotational tasks depend on morphological structure of a particular natural language. The focus of this work is part-of-speech tagging (POS tagging) on Hindi language. Part-of-speech tagging also known as grammatical tagging is a process of assigning different grammatical categories to each word of a given text. These grammatical categories can be noun, verb, time, date, number etc. Hindi is the most widely used and official language of India. It is also among the top five most spoken languages of the world. For English and other languages, a diverse range of POS taggers are available, but these POS taggers can not be applied on the Hindi language as Hindi is one of the most morphologically rich language. Furthermore there is a significant difference between the morphological structures of these languages. Thus in this work, a POS tagger system is presented for the Hindi language. For Hindi POS tagging a hybrid approach is presented in this paper which combines "Probability-based and Rule-based" approaches. For known word tagging a Unigram model of probability class is used, whereas for tagging unknown words various lexical and contextual features are used. Various finite state machine automata are constructed for demonstrating different rules and then regular expressions are used to implement these rules. A tagset is also prepared for this task, which contains 29 standard part-of-speech tags. The tagset also includes two unique tags, i.e., date tag and time tag. These date and time tags support all possible formats. Regular expressions are used to implement all pattern based tags like time, date, number and special symbols. The aim of the presented approach is to increase the correctness of an automatic Hindi POS tagging while bounding the requirement of a large human-made corpus. This hybrid approach uses a probability-based model to increase automatic tagging and a rule-based model to bound the requirement of an already trained corpus. This approach is based on very small labeled training set (around 9,000 words) and yields 96.54% of best precision and 95.08% of average precision. The approach also yields best accuracy of 91.39% and an average accuracy of 88.15%.
논 본문은 문서의 주요 내용을 나타내는 문장을 추출함으로써 요약문을 작성하는 자동 요약 기법에 대해 기술하고 있다. 개발한 시스템은 문서 집합으로부터 추출한 어휘적, 통계적 정보를 고려하여 요약 문장을 작성하는 모델이다. 시스템은 크게 두 부분, 학습과정과 요약과정으로 구성이 된다. 학습 과정은 수동으로 작성한 요약문장으로부터 다양한 통계적인 정보를 추출하는 단계이며, 요약 과정은 학습 과정에서 추출한 정보를 이용하여 각 문장이 요약문장에 포함될 가능성을 계산하는 과정이다. 본 연구는 크게 세 가지 의의를 갖는다. 첫째, 개발된 시스템은 각 문장을 텍스트 구성 요소의 하나로 분류하는 텍스트 구성 요소 판별 모델을 사용한다. 이 과정을 통해 요약 문장에 포함될 가능성이 없는 문장을 미리 제거하는 효과를 얻게 된다. 둘째, 개발한 시스템이 영어 기반의 시스템을 발전시킨 것이지만, 각각의 자질을 독립적으로 요약에 적용시켰으며, Dempster-Shafer 규칙을 사용해서 다양한 자질의 확률 값을 혼합함으로써 문장이 요약문에 포함될 최종 확률을 계산하게 된다. 셋째, 기존의 시스템에서 사용하지 않은 새로운 자질 (feature)을 사용하였으며, 실험을 통하여 각각의 자질이 요약 시스템의 성능에 미치는 효과를 알아보았다.
한국어나 일본어와 같이 부분 어순 자유 언어에서는 규칙 기반 방법이 구 단위화에 있어서 매우 유용한 방법이며, 실제로 잘 발달된 조사와 어미를 활용하면 소수의 규칙만으로도 여러 가지 기계학습 기법들만큼 높은 성능을 보일 수 있다. 하지만, 이 방법은 규칙의 예외를 처리할 수 있는 방법이 없다는 단점이 있다. 예외 처리는 자연언어처리에서 매우 중요한 문제이며, 기억 기반 학습이 이 문제를 효과적으로 다룰 수 있다. 본 논문에서는, 한국어 단위화를 위해서 규칙 기반 방법과 기억 기반 학습을 결합하는 방법을 제시한다. 제시된 방법은 우선 규칙에 기초하고, 규칙으로 추정한 단위를 기억 기반 학습으로 검증한다. STEP 2000 말뭉치에 대한 실험 결과, 본 논문에서 제시한 방법이 규칙이나 여러 기계학습 기법을 단독으로 사용하였을 때보다 높은 성능을 보였다. 규칙과 구 단위화에 가장 좋은 성능을 보인 Support Vector Machines의 F-score가 각각 91.87과 92.54인데 비하여, 본 논문에서 제시된 방법의 최종 F-score 는 94.19이다.
Munkhdalai, Tsendsuren;Li, Meijing;Yun, Unil;Namsrai, Oyun-Erdene;Ryu, Keun Ho
Journal of Information Processing Systems
/
제8권4호
/
pp.575-588
/
2012
Exploiting unlabeled text data with a relatively small labeled corpus has been an active and challenging research topic in text mining, due to the recent growth of the amount of biomedical literature. Biomedical named-entity recognition is an essential prerequisite task before effective text mining of biomedical literature can begin. This paper proposes an Active Co-Training (ACT) algorithm for biomedical named-entity recognition. ACT is a semi-supervised learning method in which two classifiers based on two different feature sets iteratively learn from informative examples that have been queried from the unlabeled data. We design a new classification problem to measure the informativeness of an example in unlabeled data. In this classification problem, the examples are classified based on a joint view of a feature set to be informative/non-informative to both classifiers. To form the training data for the classification problem, we adopt a query-by-committee method. Therefore, in the ACT, both classifiers are considered to be one committee, which is used on the labeled data to give the informativeness label to each example. The ACT method outperforms the traditional co-training algorithm in terms of f-measure as well as the number of training iterations performed to build a good classification model. The proposed method tends to efficiently exploit a large amount of unlabeled data by selecting a small number of examples having not only useful information but also a comprehensive pattern.
Journal of information and communication convergence engineering
/
제22권1호
/
pp.33-43
/
2024
Automated text summarization (ATS) systems rely on language resources as datasets. However, creating these datasets is a complex and labor-intensive task requiring linguists to extensively annotate the data. Consequently, certain public datasets for ATS, particularly in languages such as Thai, are not as readily available as those for the more popular languages. The primary objective of the ATS approach is to condense large volumes of text into shorter summaries, thereby reducing the time required to extract information from extensive textual data. Owing to the challenges involved in preparing language resources, publicly accessible datasets for Thai ATS are relatively scarce compared to those for widely used languages. The goal is to produce concise summaries and accelerate the information extraction process using vast amounts of textual input. This study introduced ThEconSum, an ATS architecture specifically designed for Thai language, using economy-related data. An evaluation of this research revealed the significant remaining tasks and limitations of the Thai language.
TimeML is a markup language for events and temporal expressions in natural language, proposed in Pustejovsky et al. (2003) and latter standardized as ISO-TimeML (ISO 24617-1:2009). In this paper, we propose the further specification of ISO-TimeML for the Korean language with the concrete and thorough examination of real world texts. Since Korean differs significantly from English, which is the first and almost only extensively tested language with TimeML, one continuously run into theoretical and practical difficulties in the application of TimeML to Korean. We focus on the discussion for the consistent and efficient application of TimeML: how to consistently apply TimeML in accordance with Korean specificity and what to be annotated and what not to be, i.e. which information is meaningful in the temporal interpretation of Korean text, for efficient application of TimeML.
본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.
In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.
An important amount of clinical data concerning the medical history of a patient is in the form of clinical reports that are written by doctors. They describe patients, their pathologies, their personal and medical histories, findings made during interviews or during procedures, and so forth. They represent a source of precious information that can be used in several applications such as research information to diagnose new patients, epidemiological studies, decision support, statistical analysis, and data mining. But this information is difficult to access, as it is often in unstructured text form. To make access to patient data easy, our research aims to develop a system for extracting information from unstructured text. In a previous work, a rule-based approach is applied to a clinical reports corpus of infectious diseases to extract structured data in the form of named entities and properties. In this paper, we propose the use of a Boolean inference engine, which is based on a cellular automaton, to do extraction. Our motivation to adopt this Boolean modeling approach is twofold: first optimize storage, and second reduce the response time of the entities extraction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.