• Title/Summary/Keyword: Text corpus

Search Result 244, Processing Time 0.024 seconds

GNI Corpus Version 1.0: Annotated Full-Text Corpus of Genomics & Informatics to Support Biomedical Information Extraction

  • Oh, So-Yeon;Kim, Ji-Hyeon;Kim, Seo-Jin;Nam, Hee-Jo;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.75-77
    • /
    • 2018
  • Genomics & Informatics (NLM title abbreviation: Genomics Inform) is the official journal of the Korea Genome Organization. Text corpus for this journal annotated with various levels of linguistic information would be a valuable resource as the process of information extraction requires syntactic, semantic, and higher levels of natural language processing. In this study, we publish our new corpus called GNI Corpus version 1.0, extracted and annotated from full texts of Genomics & Informatics, with NLTK (Natural Language ToolKit)-based text mining script. The preliminary version of the corpus could be used as a training and testing set of a system that serves a variety of functions for future biomedical text mining.

Opinion: Strategy of Semi-Automatically Annotating a Full-Text Corpus of Genomics & Informatics

  • Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.40.1-40.3
    • /
    • 2018
  • There is a communal need for an annotated corpus consisting of the full texts of biomedical journal articles. In response to community needs, a prototype version of the full-text corpus of Genomics & Informatics, called GNI version 1.0, has recently been published, with 499 annotated full-text articles available as a corpus resource. However, GNI needs to be updated, as the texts were shallow-parsed and annotated with several existing parsers. I list issues associated with upgrading annotations and give an opinion on the methodology for developing the next version of the GNI corpus, based on a semi-automatic strategy for more linguistically rich corpus annotation.

Corpus-based evaluation of French text normalization (코퍼스 기반 프랑스어 텍스트 정규화 평가)

  • Kim, Sunhee
    • Phonetics and Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.31-39
    • /
    • 2018
  • This paper aims to present a taxonomy of non-standard words (NSW) for developing a French text normalization system and to propose a method for evaluating this system based on a corpus. The proposed taxonomy of French NSWs consists of 13 categories, including 2 types of letter-based categories and 9 types of number-based categories. In order to evaluate the text normalization system, a representative test set including NSWs from various text domains, such as news, literature, non-fiction, social-networking services (SNSs), and transcriptions, is constructed, and an evaluation equation is proposed reflecting the distribution of the NSW categories of the target domain to which the system is applied. The error rate of the test set is 1.64%, while the error rate of the whole corpus is 2.08%, reflecting the NSW distribution in the corpus. The results show that the literature and SNS domains are assessed as having higher error rates compared to the test set.

Statistical Analysis Between Size and Balance of Text Corpus by Evaluation of the effect of Interview Sentence in Language Modeling (언어모델 인터뷰 영향 평가를 통한 텍스트 균형 및 사이즈간의 통계 분석)

  • Jung Eui-Jung;Lee Youngjik
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.87-90
    • /
    • 2002
  • This paper analyzes statistically the relationship between size and balance of text corpus by evaluation of the effect of interview sentences in language model for Korean broadcast news transcription system. Our Korean broadcast news transcription system's ultimate purpose is to recognize not interview speech, but the anchor's and reporter's speech in broadcast news show. But the gathered text corpus for constructing language model consists of interview sentences a portion of the whole, $15\%$ approximately. The characteristic of interview sentence is different from the anchor's and the reporter's in one thing or another. Therefore it disturbs the anchor and reporter oriented language modeling. In this paper, we evaluate the effect of interview sentences in language model for Korean broadcast news transcription system and analyze statistically the relationship between size and balance of text corpus by making an experiment as the same procedure according to varying the size of corpus.

  • PDF

Study on Difference of Wordvectors Analysis Induced by Text Preprocessing for Deep Learning (딥러닝을 위한 텍스트 전처리에 따른 단어벡터 분석의 차이 연구)

  • Ko, Kwang-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.489-495
    • /
    • 2022
  • It makes difference to LSTM D/L(Deep Learning) results for language model construction as the corpus preprocess changes. An LSTM model was trained with a famouse literaure poems(Ki Hyung-do's work) for training corpus in the study. You get the two wordvector sets for two corpus sets of the original text and eraised word ending text each once D/L training completed. It's been inspected of the similarity/analogy operation results, the positions of the wordvectors in 2D plane and the generated texts by the language models for the two different corpus sets. The suggested words by the silmilarity/analogy operations are changed for the corpus sets but they are related well considering the corpus characteristics as a literature work. The positions of the wordvectors are different for each corpus sets but the words sustained the basic meanings and the generated texts are different for each corpus sets also but they have the taste of the original style. It's supposed that the D/L language model can be a useful tool to enjoy the literature in object and in diverse with the analysis results shown in the study.

Development of Online Fashion Thesaurus and Taxonomy for Text Mining (텍스트마이닝을 위한 패션 속성 분류체계 및 말뭉치 웹사전 구축)

  • Seyoon Jang;Ha Youn Kim;Songmee Kim;Woojin Choi;Jin Jeong;Yuri Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1142-1160
    • /
    • 2022
  • Text data plays a significant role in understanding and analyzing trends in consumer, business, and social sectors. For text analysis, there must be a corpus that reflects specific domain knowledge. However, in the field of fashion, the professional corpus is insufficient. This study aims to develop a taxonomy and thesaurus that considers the specialty of fashion products. To this end, about 100,000 fashion vocabulary terms were collected by crawling text data from WSGN, Pantone, and online platforms; text subsequently was extracted through preprocessing with Python. The taxonomy was composed of items, silhouettes, details, styles, colors, textiles, and patterns/prints, which are seven attributes of clothes. The corpus was completed through processing synonyms of terms from fashion books such as dictionaries. Finally, 10,294 vocabulary words, including 1,956 standard Korean words, were classified in the taxonomy. All data was then developed into a web dictionary system. Quantitative and qualitative performance tests of the results were conducted through expert reviews. The performance of the thesaurus also was verified by comparing the results of text mining analysis through the previously developed corpus. This study contributes to achieving a text data standard and enables meaningful results of text mining analysis in the fashion field.

This study revises Lee Hyo-seok's The Buckwheat Season, utilizing Novel Corpus, intermediate learners' level (소설텍스트의 난이도 조정 방안 연구 -이효석의 「메밀꽃 필 무렵」을 중심으로-)

  • Hwang, Hye ran
    • Journal of Korean language education
    • /
    • v.29 no.4
    • /
    • pp.255-294
    • /
    • 2018
  • The Buckwheat Season, evaluated as the best of Lee Hyo-seok's literature, is one of the short stories that represent Korean literature. However, vivid literary expressions such as lyrical and beautiful depictions, figurative expressions and dialects, which show the Korean beauty, rather make learners have difficulty and become a factor that fails in reading comprehension. Thus, it is necessary to revise and present the text modified for the learners' language level. The methods of revising a literary text include the revision of linguistic elements such as cryptic vocabulary or sentence structure and the revision of the composition of the text, e.g. suggestion of characters or plot, or insertion of illustration. The methods of revising the language of the text can be divided into methods of simplification and detailing. However, in the process of revising the text, many depend on the adapter's subjective perception, not revising it with objective criteria. This paper revised the text, utilizing by the Academy of Korean Studies, , and the by the National Institute of Korean Language to secure objectivity in revising the text.

Analyzing Vocabulary Characteristics of Colloquial Style Corpus and Automatic Construction of Sentiment Lexicon (구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축)

  • Kang, Seung-Shik;Won, HyeJin;Lee, Minhaeng
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.144-151
    • /
    • 2020
  • In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.

Corpus-Based Literary Analysis (코퍼스에 기반한 문학텍스트 분석)

  • Ha, Myung-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.440-447
    • /
    • 2013
  • Recently corpus linguistic analyses enable researchers to examine meanings and structural features of data, that is not detected intuitively. While the potential of corpus linguistic techniques has been established and demonstrated for non-literary data, corpus stylistic analyses have been rarely performed in terms of the analysis of literature. Specifically this paper explores keywords and their role in text analysis, which is primary part of corpus linguistic analyses. This paper focuses on the application of techniques from corpus linguistics and the interpretation of results. This paper addresses the question of what is to be gained from keyword analysis by scrutinizing keywords in Shakespeare's Romeo and Juliet.

On the Analysis of Natural Language Processing Morphology for the Specialized Corpus in the Railway Domain

  • Won, Jong Un;Jeon, Hong Kyu;Kim, Min Joong;Kim, Beak Hyun;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.189-197
    • /
    • 2022
  • Today, we are exposed to various text-based media such as newspapers, Internet articles, and SNS, and the amount of text data we encounter has increased exponentially due to the recent availability of Internet access using mobile devices such as smartphones. Collecting useful information from a lot of text information is called text analysis, and in order to extract information, it is performed using technologies such as Natural Language Processing (NLP) for processing natural language with the recent development of artificial intelligence. For this purpose, a morpheme analyzer based on everyday language has been disclosed and is being used. Pre-learning language models, which can acquire natural language knowledge through unsupervised learning based on large numbers of corpus, are a very common factor in natural language processing recently, but conventional morpheme analysts are limited in their use in specialized fields. In this paper, as a preliminary work to develop a natural language analysis language model specialized in the railway field, the procedure for construction a corpus specialized in the railway field is presented.