• 제목/요약/키워드: Text clustering

Search Result 206, Processing Time 0.019 seconds

Arabic Text Clustering Methods and Suggested Solutions for Theme-Based Quran Clustering: Analysis of Literature

  • Bsoul, Qusay;Abdul Salam, Rosalina;Atwan, Jaffar;Jawarneh, Malik
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.4
    • /
    • pp.15-34
    • /
    • 2021
  • Text clustering is one of the most commonly used methods for detecting themes or types of documents. Text clustering is used in many fields, but its effectiveness is still not sufficient to be used for the understanding of Arabic text, especially with respect to terms extraction, unsupervised feature selection, and clustering algorithms. In most cases, terms extraction focuses on nouns. Clustering simplifies the understanding of an Arabic text like the text of the Quran; it is important not only for Muslims but for all people who want to know more about Islam. This paper discusses the complexity and limitations of Arabic text clustering in the Quran based on their themes. Unsupervised feature selection does not consider the relationships between the selected features. One weakness of clustering algorithms is that the selection of the optimal initial centroid still depends on chances and manual settings. Consequently, this paper reviews literature about the three major stages of Arabic clustering: terms extraction, unsupervised feature selection, and clustering. Six experiments were conducted to demonstrate previously un-discussed problems related to the metrics used for feature selection and clustering. Suggestions to improve clustering of the Quran based on themes are presented and discussed.

The Evaluation Measure of Text Clustering for the Variable Number of Clusters (가변적 클러스터 개수에 대한 문서군집화 평가방법)

  • Jo, Tae-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.233-237
    • /
    • 2006
  • This study proposes an innovative measure for evaluating the performance of text clustering. In using K-means algorithm and Kohonen Networks for text clustering, the number clusters is fixed initially by configuring it as their parameter, while in using single pass algorithm for text clustering, the number of clusters is not predictable. Using labeled documents, the result of text clustering using K-means algorithm or Kohonen Network is able to be evaluated by setting the number of clusters as the number of the given target categories, mapping each cluster to a target category, and using the evaluation measures of text. But in using single pass algorithm, if the number of clusters is different from the number of target categories, such measures are useless for evaluating the result of text clustering. This study proposes an evaluation measure of text clustering based on intra-cluster similarity and inter-cluster similarity, what is called CI (Clustering Index) in this article.

  • PDF

Web Image Clustering with Text Features and Measuring its Efficiency

  • Cho, Soo-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.699-706
    • /
    • 2007
  • This article is an approach to improving the clustering of Web images by using high-level semantic features from text information relevant to Web images as well as low-level visual features of image itself. These high-level text features can be obtained from image URLs and file names, page titles, hyperlinks, and surrounding text. As a clustering algorithm, a self-organizing map (SOM) proposed by Kohonen is used. To evaluate the clustering efficiencies of SOMs, we propose a simple but effective measure indicating the accumulativeness of same class images and the perplexities of class distributions. Our approach is to advance the existing measures through defining and using new measures accumulativeness on the most superior clustering node and concentricity to evaluate clustering efficiencies of SOMs. The experimental results show that the high-level text features are more useful in SOM-based Web image clustering.

  • PDF

Enhancing Text Document Clustering Using Non-negative Matrix Factorization and WordNet

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • A classic document clustering technique may incorrectly classify documents into different clusters when documents that should belong to the same cluster do not have any shared terms. Recently, to overcome this problem, internal and external knowledge-based approaches have been used for text document clustering. However, the clustering results of these approaches are influenced by the inherent structure and the topical composition of the documents. Further, the organization of knowledge into an ontology is expensive. In this paper, we propose a new enhanced text document clustering method using non-negative matrix factorization (NMF) and WordNet. The semantic terms extracted as cluster labels by NMF can represent the inherent structure of a document cluster well. The proposed method can also improve the quality of document clustering that uses cluster labels and term weights based on term mutual information of WordNet. The experimental results demonstrate that the proposed method achieves better performance than the other text clustering methods.

Inverted Index based Modified Version of K-Means Algorithm for Text Clustering

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors and modified version of k means algorithm to be adaptable to string vectors for text clustering. Traditionally, when k means algorithm is used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text clustering, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and modify the k means algorithm adaptable to string vectors for text clustering.

Combining Distributed Word Representation and Document Distance for Short Text Document Clustering

  • Kongwudhikunakorn, Supavit;Waiyamai, Kitsana
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.277-300
    • /
    • 2020
  • This paper presents a method for clustering short text documents, such as news headlines, social media statuses, or instant messages. Due to the characteristics of these documents, which are usually short and sparse, an appropriate technique is required to discover hidden knowledge. The objective of this paper is to identify the combination of document representation, document distance, and document clustering that yields the best clustering quality. Document representations are expanded by external knowledge sources represented by a Distributed Representation. To cluster documents, a K-means partitioning-based clustering technique is applied, where the similarities of documents are measured by word mover's distance. To validate the effectiveness of the proposed method, experiments were conducted to compare the clustering quality against several leading methods. The proposed method produced clusters of documents that resulted in higher precision, recall, F1-score, and adjusted Rand index for both real-world and standard data sets. Furthermore, manual inspection of the clustering results was conducted to observe the efficacy of the proposed method. The topics of each document cluster are undoubtedly reflected by members in the cluster.

The Effectiveness of High-level Text Features in SOM-based Web Image Clustering (SOM 기반 웹 이미지 분류에서 고수준 텍스트 특징들의 효과)

  • Cho Soo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.121-126
    • /
    • 2006
  • In this paper, we propose an approach to increase the power of clustering Web images by using high-level semantic features from text information relevant to Web images as well as low-level visual features of image itself. These high-level text features can be obtained from image URLs and file names, page titles, hyperlinks, and surrounding text. As a clustering engine, self-organizing map (SOM) proposed by Kohonen is used. In the SOM-based clustering using high-level text features and low-level visual features, the 200 images from 10 categories are divided in some suitable clusters effectively. For the evaluation of clustering powers, we propose simple but novel measures indicating the degrees of scattering images from the same category, and degrees of accumulation of the same category images. From the experiment results, we find that the high-level text features are more useful in SOM-based Web image clustering.

An Improved K-means Document Clustering using Concept Vectors

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.853-861
    • /
    • 2003
  • An improved K-means document clustering method has been presented, where a concept vector is manipulated for each cluster on the basis of cosine similarity of text documents. The concept vectors are unit vectors that have been normalized on the n-dimensional sphere. Because the standard K-means method is sensitive to initial starting condition, our improvement focused on starting condition for estimating the modes of a distribution. The improved K-means clustering algorithm has been applied to a set of text documents, called Classic3, to test and prove efficiency and correctness of clustering result, and showed 7% improvements in its worst case.

  • PDF

A Multi-Dimensional Issue Clustering from the Perspective Consumers' Interests and R&D (소비자 선호 이슈 및 R&D 관점에서의 다차원 이슈 클러스터링)

  • Hyun, Yoonjin;Kim, Namgyu;Cho, Yoonho
    • Journal of Information Technology Services
    • /
    • v.14 no.1
    • /
    • pp.237-249
    • /
    • 2015
  • The volume of unstructured text data generated by various social media has been increasing rapidly; therefore, use of text mining to support decision making has also been increasing. Especially, issue Clustering-determining a new relation with various issues through clustering-has gained attention from many researchers. However, traditional issue clustering methods can only be performed based on the co-occurrence frequency of issue keywords in many documents. Therefore, an association between issues that have a low co-occurrence frequency cannot be discovered using traditional issue clustering methods, even if those issues are strongly related in other perspectives. Therefore, issue clustering that fits each of criteria needs to be performed by the perspective of analysis and the purpose of use. In this study, a multi-dimensional issue clustering is proposed to overcome the limitation of traditional issue clustering. We assert, specifically in this study, that issue clustering should be performed for a particular purpose. We analyze the results of applying our methodology to two specific perspectives on issue clustering, (i) consumers' interests, and (ii) related R&D terms.

The Adaptive SPAM Mail Detection System using Clustering based on Text Mining

  • Hong, Sung-Sam;Kong, Jong-Hwan;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2186-2196
    • /
    • 2014
  • Spam mail is one of the most general mail dysfunctions, which may cause psychological damage to internet users. As internet usage increases, the amount of spam mail has also gradually increased. Indiscriminate sending, in particular, occurs when spam mail is sent using smart phones or tablets connected to wireless networks. Spam mail consists of approximately 68% of mail traffic; however, it is believed that the true percentage of spam mail is at a much more severe level. In order to analyze and detect spam mail, we introduce a technique based on spam mail characteristics and text mining; in particular, spam mail is detected by extracting the linguistic analysis and language processing. Existing spam mail is analyzed, and hidden spam signatures are extracted using text clustering. Our proposed method utilizes a text mining system to improve the detection and error detection rates for existing spam mail and to respond to new spam mail types.