• 제목/요약/키워드: Text Summarization Evaluation

검색결과 16건 처리시간 0.016초

Building a text collection for Urdu information retrieval

  • Rasheed, Imran;Banka, Haider;Khan, Hamaid M.
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.856-868
    • /
    • 2021
  • Urdu is a widely spoken language in the Indian subcontinent with over 300 million speakers worldwide. However, linguistic advancements in Urdu are rare compared to those in other European and Asian languages. Therefore, by following Text Retrieval Conference standards, we attempted to construct an extensive text collection of 85 304 documents from diverse categories covering over 52 topics with relevance judgment sets at 100 pool depth. We also present several applications to demonstrate the effectiveness of our collection. Although this collection is primarily intended for text retrieval, it can also be used for named entity recognition, text summarization, and other linguistic applications with suitable modifications. Ours is the most extensive existing collection for the Urdu language, and it will be freely available for future research and academic education.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.

워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법 (Multi-Document Summarization Method of Reviews Using Word Embedding Clustering)

  • 이필원;황윤영;최종석;신용태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.535-540
    • /
    • 2021
  • 다중문서는 하나의 주제가 아닌 다양한 주제로 구성된 문서를 의미하며 대표적인 예로 온라인 리뷰가 있다. 온라인 리뷰는 정보량이 방대하기 때문에 요약하기 위한 여러 시도가 있었다. 그러나 기존의 요약모델을 통해 리뷰를 일괄적으로 요약할 경우 리뷰를 구성하고 있는 다양한 주제가 소실되는 문제가 발생한다. 따라서 본 논문에서는 주제의 손실을 최소화하며 리뷰를 요약하기 위한 기법을 제시한다. 제안하는 기법은 전처리, 중요도 평가, BERT를 활용한 임베딩 치환, 임베딩 클러스터링과 같은 과정을 통해 리뷰를 분류한다. 그리고 분류된 문장은 학습된 Transformer 요약모델을 통해 최종 요약을 생성한다. 제안하는 모델의 성능 평가는 기존의 요약모델인 seq2seq 모델과 ROUGE 스코어와 코사인 유사도를 평가하여 비교하였으며 기존의 요약모델과 비교하여 뛰어난 성능의 요약을 수행하였다.

An Innovative Approach of Bangla Text Summarization by Introducing Pronoun Replacement and Improved Sentence Ranking

  • Haque, Md. Majharul;Pervin, Suraiya;Begum, Zerina
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.752-777
    • /
    • 2017
  • This paper proposes an automatic method to summarize Bangla news document. In the proposed approach, pronoun replacement is accomplished for the first time to minimize the dangling pronoun from summary. After replacing pronoun, sentences are ranked using term frequency, sentence frequency, numerical figures and title words. If two sentences have at least 60% cosine similarity, the frequency of the larger sentence is increased, and the smaller sentence is removed to eliminate redundancy. Moreover, the first sentence is included in summary always if it contains any title word. In Bangla text, numerical figures can be presented both in words and digits with a variety of forms. All these forms are identified to assess the importance of sentences. We have used the rule-based system in this approach with hidden Markov model and Markov chain model. To explore the rules, we have analyzed 3,000 Bangla news documents and studied some Bangla grammar books. A series of experiments are performed on 200 Bangla news documents and 600 summaries (3 summaries are for each document). The evaluation results demonstrate the effectiveness of the proposed technique over the four latest methods.

과학과 수업 방법의 요인분석 연구 (A Study on Factor Analysis of Science Teaching Methods)

  • 홍성일;우종옥;정진우
    • 한국과학교육학회지
    • /
    • 제15권4호
    • /
    • pp.394-403
    • /
    • 1995
  • The purpose of this study was to find out and analyze the science teacher's teaching methods. A total of 35 teaching methods were abstracted from the previous studies and the relating literatures. An instrument to measure the frequencies of using methods was developed and then tested to middle school science teachers. The Results of two factor analysis methods were compared. The results are as follows: The instruments's reliablity coefficient(Cronbach ${\alpha}$) was 0.7707. The teaching methods which middle school science teachers have used frequently were represented as the proposing of the learning objectives, the deductive teaching, the experimental activities by teacher's guide, the summarization after explanation, the reading text etc. Also, it was revealed that they have not use the diagnostic evaluation, the formative evaluation, the experimental activities by student's design, the instructional medium. By confirmatory factor analysis, the 1st factor included 13 teaching methods and 2nd and 3rd factor included 9 and 7 methods respectedly. The meaning of 1st factor was interpreted to stimulate student's learning motives. And the other's were about the development of instruction. In exploratory factor analysis factors were overlapped or more fined. These were due to the structure of factors.

  • PDF

딥러닝 중심의 자연어 처리 기술 현황 분석 (Analysis of the Status of Natural Language Processing Technology Based on Deep Learning)

  • 박상언
    • 한국빅데이터학회지
    • /
    • 제6권1호
    • /
    • pp.63-81
    • /
    • 2021
  • 자연어 처리는 최근 기계학습 및 딥러닝 기술의 발전과 적용으로 성능이 빠르게 향상되고 있으며, 이로 인해 활용 분야도 넓어지고 있다. 특히 비정형 텍스트 데이터에 대한 분석 요구가 증가함에 따라 자연어 처리에 대한 관심도 더욱 높아지고 있다. 그러나 자연어 전처리 과정 및 기계학습과 딥러닝 이론의 복잡함과 어려움으로 인해 아직도 자연어 처리 활용의 장벽이 높은 편이다. 본 논문에서는 자연어 처리의 전반적인 이해를 위해 현재 활발히 연구되고 있는 자연어 처리의 주요 분야와 기계학습 및 딥러닝을 중심으로 한 주요 기술의 현황에 대해 살펴봄으로써, 보다 쉽게 자연어 처리에 대해 이해하고 활용할 수 있는 기반을 제공하고자 한다. 이를 위해 인공지능 기술 분류체계의 변화를 통해 자연어 처리의 비중 및 변화 과정을 살펴보았으며, 기계학습과 딥러닝을 기반으로 한 자연어 처리 주요 분야를 언어 모델, 문서 분류, 문서 생성, 문서 요약, 질의응답, 기계번역으로 나누어 정리하고 각 분야에서 가장 뛰어난 성능을 보이는 모형들을 살펴보았다. 그리고, 자연어 처리에서 활용되고 있는 주요 딥러닝 모형들에 대해 정리하고 자연어 처리 분야에서 사용되는 데이터셋과 성능평가를 위한 평가지표에 대해 정리하였다. 본 논문을 통해, 자연어 처리를 자신의 분야에서 다양한 목적으로 활용하고자 하는 연구자들이 자연어 처리의 전반적인 기술 현황에 대해 이해하고, 자연어 처리의 주요 기술 분야와 주로 사용되는 딥러닝 모형 및 데이터셋과 평가지표에 대해 보다 쉽게 파악할 수 있기를 기대한다.