• Title/Summary/Keyword: Text Mining Analysis

Search Result 1,217, Processing Time 0.024 seconds

Using Text Mining for the Analysis of Research Trends Related to Laws Under the Ministry of Oceans and Fisheries (텍스트 마이닝을 활용한 해양수산부 법률 관련 연구동향 분석연구)

  • Hwang, Kyu Won;Lee, Moon Suk;Yun, So Ra
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.549-566
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has progressed rapidly, and industries using this technology are significantly increasing. Further, analysis research using text mining, which is an application of artificial intelligence, is being actively developed in the field of social science research. About 125 laws, including joint laws, have been enacted under the Ministry of Oceans and Fisheries in various sectors including marine environment, fisheries, ships, fishing villages, ports, etc. Research on the laws under the Ministry of Oceans and Fisheries has been progressively conducted, and is steadily increasing quantitatively. In this study, the domestic research trends were analyzed through text mining, targeting the research papers related to laws of the Ministry of Oceans and Fisheries. As part of this research method, first, topic modeling which is a type of text mining was performed to identify potential topics. Second, co-occurrence network analysis was performed, focusing on the keywords in the research papers dealing with specific laws to derive the key themes covered. Finally, author network analysis was performed to explore social networks among authors. The results showed that key topics have been changed by period, and subjects were explored by targeting Ship Safety Law, Marine Environment Management Law, Fisheries Law, etc. Furthermore, in this study, core researchers were selected based on author network analysis, and the tendency for joint research performed by authors was identified. Through this study, changes in the topics for research related to the laws of the Ministry of Oceans and Fisheries were identified up to date, and it is expected that future research topics will be further diversified, and there will be growth of quantitative and qualitative research in the field of oceans and fisheries.

Financial Footnote Analysis for Financial Ratio Predictions based on Text-Mining Techniques (재무제표 주석의 텍스트 분석 통한 재무 비율 예측 향상 연구)

  • Choe, Hyoung-Gyu;Lee, Sang-Yong Tom
    • Knowledge Management Research
    • /
    • v.21 no.2
    • /
    • pp.177-196
    • /
    • 2020
  • Since the adoption of K-IFRS(Korean International Financial Reporting Standards), the amount of financial footnotes has been increased. However, due to the stereotypical phrase and the lack of conciseness, deriving the core information from footnotes is not really easy yet. To propose a solution for this problem, this study tried financial footnote analysis for financial ratio predictions based on text-mining techniques. Using the financial statements data from 2013 to 2018, we tried to predict the earning per share (EPS) of the following quarter. We found that measured prediction errors were significantly reduced when text-mined footnotes data were jointly used. We believe this result came from the fact that discretionary financial figures, which were hardly predicted with quantitative financial data, were more correlated with footnotes texts.

Analysis of 'Better Class' Characteristics and Patterns from College Lecture Evaluation by Longitudinal Big Data

  • Nam, Min-Woo;Cho, Eun-Soon
    • International Journal of Contents
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2019
  • The purpose of this study was to analyze characteristics and patterns of 'better class' by using the longitudinal text mining big data analysis technique from subjective lecture evaluation comments. First, this study classified upper 30% classes to deduce certain characteristics and patterns from every five-year subjective text data for 10 years. A total of 47,177courses (100%) from spring semester 2005 to fall semester 2014 were analyzed from a university at a metropolitan city in the mid area of South Korea. This study extracted meaningful words such as good, course, professor, appreciation, lecture, interesting, useful, know, easy, improvement, progress, teaching material, passion, and concern from the order of frequency 2005-2009. The other set of words were class, appreciation, professor, good, course, interesting, understanding, useful, help, student, effort, thinking, not difficult, explanation, lecture, hard, pleasant, easy, study, examination, like, various, fun, and knowledge 2010-2014. This study suggests that the characteristics and patterns of 'better class' at college, should be analyzed according to different academic code such as liberal arts, fine arts, social science, engineering, math and science, and etc.

A Study on De-Identification Methods to Create a Basis for Safety Report Text Mining Analysis (항공안전 보고 데이터 텍스트 분석 기반 조성을 위한 비식별 처리 기술 적용 연구)

  • Hwang, Do-bin;Kim, Young-gon;Sim, Yeong-min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.160-165
    • /
    • 2021
  • In order to identify and analyze potential aviation safety hazards, analysis of aviation safety report data must be preceded. Therefore, in consideration of the provisions of the Aviation Safety Act and the recommendations of ICAO Doc 9859 SMM Edition 4th, personal information in the reporting data and sensitive information of the reporter, etc. It identifies the scope of de-identification targets and suggests a method for applying de-identification processing technology to personal and sensitive information including unstructured text data.

Analysis of Real Estate Market Trend Using Text Mining and Big Data (빅데이터와 텍스트마이닝을 이용한 부동산시장 동향분석)

  • Chun, Hae-Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2019
  • This study is on the trend of real estate market using text mining and big data. The data were collected through internet news posted on Naver from August 2016 to August 2017. As a result of TF-IDF analysis, the frequency was high in the order of housing, sale, household, real estate market, and region. Many words related to policies such as loan, government, countermeasures, and regulations were extracted, and the region - related words appeared the most frequently in Seoul. The combination of the words related to the region showed that the frequencies of 'Seoul - Gangnam', 'Seoul - Metropolitan area', 'Gangnam - reconstruction' and 'Seoul - reconstruction' appeared frequently. It can be seen that the people's interest and expectation about the reconstruction of Gangnam area is high.

Customer Value Proposition Methodology Using Text Mining of Online Customer Reviews (온라인 고객 리뷰에 대한 텍스트마이닝을 활용한 고객가치제안 방법)

  • Han, Young-Kyung;Kim, Chul-Min;Park, Kwang-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.85-97
    • /
    • 2021
  • Online consumer activities have increased considerably since the COVID-19 outbreak. For the products and services which have an impact on everyday life, online reviews and recommendations can play a significant role in consumer decision-making processes. Thus, to better serve their customers, online firms are required to build online-centric marketing strategies. Especially, it is essential to define core value of customers based on the online customer reviews and to propose these values to their customers. This study discovers specific perceived values of customers in regard to a certain product and service, using online customer reviews and proposes a customer value proposition methodology which enables online firms to develop more effective marketing strategies. In order to discover customers value, the methodology employs a text-mining technology, which combines a sentiment analysis and topic modeling. By the methodology, customer emotions and value factors can be more clearly defined. It is expected that online firms can better identify value elements of their respective customers, provide appropriate value propositions, and thus gain sustainable competitive advantage.

Analysis of speech in game marketing video using text mining techniques (텍스트 마이닝 기법을 이용한 게임 마케팅 비디오에서의 스피치 분석)

  • Lee, Yeokyung;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.147-159
    • /
    • 2022
  • Nowadays, various social media platforms are widely spread and people closely use such platforms in daily life. By doing so, social influencers with a large number of subscribers, views, and comments have huge impact in our society. Following this trend, many companies are actively using influencers for marketing purpose to promote their products and services. In this study, we extract the speeches of influencers from videos for game marketing and analyze them using various text mining techniques. In the analysis, we distinguish game videos leading to successful marketing and failed marketing, and we explore and compare the linguistic features of the influencers for successful and failed marketings.

Analysis of VR Game Trends using Text Mining and Word Cloud -Focusing on STEAM review data- (텍스트마이닝과 워드 클라우드를 활용한 VR 게임 트렌드 분석 -스팀(steam) 리뷰 데이터를 중심으로-)

  • Na, Ji Young
    • Journal of Korea Game Society
    • /
    • v.22 no.1
    • /
    • pp.87-98
    • /
    • 2022
  • With the development of fourth industrial revolution-related technology and increased demands for non-face-to-face services, VR games attract attention. This study collected VR game review data from an online game platform STEAM and analyzed chronical trends using text mining and word cloud analysis. According to the results, experience and perceived cost were major trends from 2016 to 2017, increased demands for FPS and rhythm games were from 2018 to 2019, and story and immersion were from 2020 to 2021. It aims to contribute to expanding the base of VR games by identifying the keywords VR users take interest in by period.

Analysis of Consumer Value Structure in Vintage Clothing Consumption -Based on Text Mining and Means-End Chain Analysis- (빈티지 의류 소비에서의 소비자 가치구조 분석 -텍스트 마이닝 기법과 수단-목적 사슬 분석을 중심으로-)

  • Yujeong Won;Chanhee Kang;Yuri Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.4
    • /
    • pp.729-742
    • /
    • 2023
  • This two-part study explores the changes in the types of perceived value and consumption channels for vintage clothing and the relationship between the two variables. In Study 1, we used text mining with the keyword "fashion+vintage." Emotional value was the most frequently mentioned, and environmental value increased the most. We also revealed an increasing trend in online channels for vintage clothing consumption. In Study 2, we analyzed 30 interviews with consumers who had purchased vintage clothing through online channels. We identified 7 attributes and 20 goals for vintage consumption online and pinpointed three strong connections. First, consumers reported high levels of service satisfaction due to the usefulness of algorithms. Second, the authenticity and heritage information available through online and mobile channels were associated with consumers' perceptions of value related to financial benefits. Third, consumers sought to find rare products through online channels, leading to a strong influence on their sense of achievement. Overall, this study proposed ways to increase the value of vintage clothing perceived by consumers through consumption online.

The Ebb and Flow of Regional Integration Vision in Asia-Pacific: From a Lens of Leaders' Declarations over 30 Years

  • Jeongmeen Suh
    • East Asian Economic Review
    • /
    • v.27 no.4
    • /
    • pp.303-325
    • /
    • 2023
  • This paper examines how APEC has transformed itself into an international forum for the vision of regional integration. It aims to quantify the documentation produced by the international organization and provide quantifiable evidence that aligns with prior knowledge rather than relying solely on intuition. For this purpose, I use various text mining techniques to extract multi-dimensional features from the text of APEC Leaders' Declarations from 1993 to 2023. In terms of interest and expectations for APEC as a forum, it is found that members have experienced two major peaks and troughs over the last three decades. It is found that the change point coincides with the Asian financial crisis of 1997 and the tensions between the United States and China since 2017. To explore more various aspects of economic integration in the Asia-Pacific region, this study also considers how consistently APEC has been an international forum for addressing issues, which members are active, and how members have clustered based on their views of APEC.