• Title/Summary/Keyword: Text Mining

Search Result 1,545, Processing Time 0.032 seconds

Trend Forecasting and Analysis of Quantum Computer Technology (양자 컴퓨터 기술 트렌드 예측과 분석)

  • Cha, Eunju;Chang, Byeong-Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.35-44
    • /
    • 2022
  • In this study, we analyze and forecast quantum computer technology trends. Previous research has been mainly focused on application fields centered on technology for quantum computer technology trends analysis. Therefore, this paper analyzes important quantum computer technologies and performs future signal detection and prediction, for a more market driven technical analysis and prediction. As analyzing words used in news articles to identify rapidly changing market changes and public interest. This paper extends conference presentation of Cha & Chang (2022). The research is conducted by collecting domestic news articles from 2019 to 2021. First, we organize the main keywords through text mining. Next, we explore future quantum computer technologies through analysis of Term Frequency - Inverse Document Frequency(TF-IDF), Key Issue Map(KIM), and Key Emergence Map (KEM). Finally, the relationship between future technologies and supply and demand is identified through random forests, decision trees, and correlation analysis. As results of the study, the interest in artificial intelligence was the highest in frequency analysis, keyword diffusion and visibility analysis. In terms of cyber-security, the rate of mention in news articles is getting overwhelmingly higher than that of other technologies. Quantum communication, resistant cryptography, and augmented reality also showed a high rate of increase in interest. These results show that the expectation is high for applying trend technology in the market. The results of this study can be applied to identifying areas of interest in the quantum computer market and establishing a response system related to technology investment.

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.

A Comparative Analysis of OTT Service Reviews Before and After the Onset of the Pandemic Using Text Mining Technique: Focusing on the Emotion-Focused Coping and Nostalgia (텍스트 마이닝을 활용한 코로나 19 전후 온라인 동영상 서비스(OTT) 리뷰 비교분석 연구 - 정서 중심 대처와 노스탤지어를 중심으로)

  • Ko, Minjeong;Lee, Sangwon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.375-388
    • /
    • 2021
  • This study aims to contribute to the understanding of consumer behavior during the COVID-19 by comparing blog reviews of an over-the-top (OTT) online video service from before and during the pandemic. We anticipate that the COVID-19 outbreak prompts the use of the OTT service as part of an emotion-focused coping strategy derived from the loss of personal control and the subsequent avoidance motivation. We also posit that a strong yearning for life before COVID-19 will increase interest in the content that fulfills a need for nostalgia. Our analysis of Netflix reviews provides empirical evidence of the effects of an emotion-focused coping strategy and nostalgia on OTT service usage. First, the titles of the reviews posted during COVID-19 indicate that consumers were less likely to mention OTT services other than Netflix, more interested in domestic content, and used OTT services as an avoidance-denial strategy. Second, the blog content demonstrates that while pre-COVID reviews tend to focus on the practical benefits of OTT services, those posted during the pandemic focus on mood, emotions, and dialogue. In addition, interest in comedy and romance genres increased during COVID-19. Third, we identified a greater preference for realistic or everyday content that depicted the pre-pandemic era. This is the first empirical study to investigate the effects of COVID-19 on video streaming usage in Korea. In addition, this research contributes to the field of marketing by expanding our understanding of online video service users during COVID-19 and identifies practical implications for OTT services in the midst of a pandemic.

A Study on Research Trends in Metaverse Platform Using Big Data Analysis (빅데이터 분석을 활용한 메타버스 플랫폼 연구 동향 분석)

  • Hong, Jin-Wook;Han, Jung-Wan
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2022
  • As the non-face-to-face situation continues for a long time due to COVID-19, the underlying technologies of the 4th industrial revolution such as IOT, AR, VR, and big data are affecting the metaverse platform overall. Such changes in the external environment such as society and culture can affect the development of academics, and it is very important to systematically organize existing achievements in preparation for changes. The Korea Educational Research Information Service (RISS) collected data including the 'metaverse platform' in the keyword and used the text mining technique, one of the big data analysis. The collected data were analyzed for word cloud frequency, connection strength between keywords, and semantic network analysis to examine the trends of metaverse platform research. As a result of the study, keywords appeared in the order of 'use', 'digital', 'technology', and 'education' in word cloud analysis. As a result of analyzing the connection strength (N-gram) between keywords, 'Edue→Tech' showed the highest connection strength and a total of three clusters of word chain clusters were derived. Detailed research areas were classified into five areas, including 'digital technology'. Considering the analysis results comprehensively, It seems necessary to discover and discuss more active research topics from the long-term perspective of developing a metaverse platform.

Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling (토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석)

  • Chung, Yunkil;Seo, Sumin;Kang, Hyunmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.57-79
    • /
    • 2022
  • COVID-19, which started in December 2019, has had a great impact on our lives in general, including politics, economy, society, and culture, and activities in sports and arts have also been significantly reduced. In the case of sports, sports for all fields in which ordinary citizens participate were particularly affected, and cases of infection in places closely related to people's lives, such as gyms, table tennis, and badminton clubs, also amplified the social fear of the spread of COVID-19. Therefore, in this study, we analyzed news articles related to sports for all at the time when COVID-19 was first spread, and investigated what issues were emerging and being discussed in the sports for all field under the COVID-19 situation. Specifically, we collected news articles dealt with sports for all issues under the COVID-19 situation from Korea's leading portal news sites and identified key sports for all issues by performing topic modeling on these articles. Through the analysis, we found meaningful issues such as COVID-19 outbreak in sports facilities and support for sports activities. In addition, through wordcloud analysis of these major issues, we visually understood the issues and identified the changes in these issues over time.

Civic Participation in Smart City : A Role and Direction (스마트도시 구현을 위한 시민참여의 역할과 방향에 관한 연구)

  • Nam, Woo-Min;Park, Keon Chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.79-86
    • /
    • 2022
  • This study aims to analyze the research trends on the civic participation in a smart city and to present implications to policy makers, industry professionals and researchers. As rapid urbanization is defining development trend of modern city, urban problems such as transportation, environment, and energy are spreading and intensifying around the city. Countries around the world are introducing smart cities to solve these urban problems and to achieve sustainable development. Recently, many countries are modifying urban planning from top-down to down-up by actively engaging citizens to participate in the urban construction process directly and indirectly. Although the construction of smart cities is being promoted in Korea to solve urban problems, awareness of smart cities and civic participation are low. In order to overcome this situation, discussions on ideas and methods that can increase civic participation in smart cities are continuously being conducted. Therefore, in this study, by collecting publication containing both 'Smart Cities' and 'Participation (Engagement)' in Scopus DB, the topics of related studies were categorized and research trends were analyzed using topic modeling. Through this study, it is expected that it can be used as evidence to understand the direction of civic participation research in smart cities and to present the direction of related research in the future.

Proposal of Promotion Strategy of Mobile Easy Payment Service Using Topic Modeling and PEST-SWOT Analysis (모바일 간편 결제 서비스 활성화 전략 : 토픽 모델링과 PEST - SWOT 분석 방법론을 기반으로)

  • Park, Seongwoo;Kim, Sehyoung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.365-385
    • /
    • 2022
  • The easy payment service is a payment and remittance service that uses a simple authentication method. As online transactions have increased due to COVID-19, the use of an easy payment service is increasing. At the same time, electronic financial industries such as Naver Pay, Kakao Pay, and Toss are diversifying the competition structure of the easy payment market; meanwhile overseas fintech companies PayPal and Alibaba have a unique market share in their own countries, while competition is intensifying in the domestic easy payment market, as there is no unique market share. In this study, the participants in the easy payment market were classified as electronic financial companies, mobile phone manufacturers, and financial companies, and a SWOT analysis was conducted on the representative services in each industry. The analysis examined the user reviews of Google Play Store via a topic modeling analysis, and it employed positive topics as strengths and negative topics as weaknesses. In addition, topic modeling was conducted by dividing news articles into political, economic, social, and technology (PEST) articles to derive the opportunities and threats to easy payment services. Through this research, we intend to confirm the service capabilities of easy payment companies and propose a service activation strategy that allows gaining the upper hand in the market.

Analysis of domestic and foreign future automobile research trends based on topic modeling (토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로)

  • Jeong, Ho Jeong;Kim, Keun-Wook;Kim, Na-Gyeong;Chang, Won-Jun;Jeong, Won-Oong;Park, Dae-Yeong
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.463-476
    • /
    • 2022
  • After industrialization in the past, the automobile industry has continued to grow centered on internal combustion engines, but is facing a major change with the recent 4th industrial revolution. Most companies are preparing for the transition to electric vehicles and autonomous driving. Therefore, in this study, topic modeling was performed based on LDA algorithm by collecting 4,002 domestic papers and 68,372 overseas papers that contain keywords related to CASE (Connectivity, Autonomous, Sharing, Electrification), which represent future automobile trends. As a result of the analysis, it was found that domestic research mainly focuses on macroscopic aspects such as traffic infrastructure, urban traffic efficiency, and traffic policy. Through this, the government's technical support for MaaS (Mobility-as-a-Service) is required in the domestic shared car sector, and the need for data opening by means of transportation was presented. It is judged that these analysis results can be used as basic data for the future automobile industry.

Development of Scaffolding Strategies Model by Information Search Process (ISP) (정보탐색과정(ISP)에 의한 스캐폴딩 전략 모형 개발)

  • Jeong-Hoon Lim
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.1
    • /
    • pp.143-165
    • /
    • 2023
  • This study aims to propose a scaffolding strategy that can be applied to the information search process by using Kuhlthau's ISP model, which presented a design and implementation strategy for the mediation role in the learning process. To this end, the relevant literature was reviewed to categorize scaffolding strategies, and impressions were collected from the students surveys after providing 150 middle school students in the Daejeon area with the project class to which the scaffolding strategy based on the ISP model was applied. The collected data were processed into a form suitable for analysis through data preprocessing for word frequencies to be extracted, and topic analysis was performed using STM (Structural Topic Modeling). First, after determining the optimal number of topics and extracting topics for each stage of the ISP model, the extracted topics were classified into three types: cognitive domain-macro perspective, cognitive domain-micro perspective, and emotional domain perspective. In this process, we focused on cognitive verbs and emotional verbs among words extracted through text mining, and presented a scaffolding strategy model related to each topic by reviewing representative document cases. Based on the results of this study, if an appropriate scaffolding strategy is provided at the ISP model stage, a positive effect on learners' self-directed task solving can be expected.

A Comparative Research on End-to-End Clinical Entity and Relation Extraction using Deep Neural Networks: Pipeline vs. Joint Models (심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 -)

  • Sung-Pil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.1
    • /
    • pp.93-114
    • /
    • 2023
  • Information extraction can facilitate the intensive analysis of documents by providing semantic triples which consist of named entities and their relations recognized in the texts. However, most of the research so far has been carried out separately for named entity recognition and relation extraction as individual studies, and as a result, the effective performance evaluation of the entire information extraction systems was not performed properly. This paper introduces two models of end-to-end information extraction that can extract various entity names in clinical records and their relationships in the form of semantic triples, namely pipeline and joint models and compares their performances in depth. The pipeline model consists of an entity recognition sub-system based on bidirectional GRU-CRFs and a relation extraction module using multiple encoding scheme, whereas the joint model was implemented with a single bidirectional GRU-CRFs equipped with multi-head labeling method. In the experiments using i2b2/VA 2010, the performance of the pipeline model was 5.5% (F-measure) higher. In addition, through a comparative experiment with existing state-of-the-art systems using large-scale neural language models and manually constructed features, the objective performance level of the end-to-end models implemented in this paper could be identified properly.