• Title/Summary/Keyword: Tetris problem

Search Result 1, Processing Time 0.017 seconds

Potential-based Reinforcement Learning Combined with Case-based Decision Theory (사례 기반 결정 이론을 융합한 포텐셜 기반 강화 학습)

  • Kim, Eun-Sun;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.978-982
    • /
    • 2009
  • This paper proposes a potential-based reinforcement learning, called "RLs-CBDT", which combines multiple RL agents and case-base decision theory designed for decision making in uncertain environment as an expert knowledge in RL. We empirically show that RLs-CBDT converges to an optimal policy faster than pre-existing RL algorithms through a Tetris experiment.