• Title/Summary/Keyword: Tetraselmis

Search Result 85, Processing Time 0.024 seconds

Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production

  • Kim, Garam;Mujtaba, Ghulam;Lee, Kisay
    • ALGAE
    • /
    • v.31 no.3
    • /
    • pp.257-266
    • /
    • 2016
  • Nitrogen is one of the most critical nutrients affecting cell growth and biochemical composition of microalgae, ultimately determining the lipid or carbohydrate productivity for biofuels. In order to investigate the effect of nitrogen sources on the cell growth and biochemical composition of the marine microalga Tetraselmis sp., nine different N sources, including NaNO3, KNO3, NH4NO3, NH4HCO3, NH4Cl, CH3COONH4, urea, glycine, and yeast extract were compared at the given concentration of 8.82 mM. Higher biomass concentration was achieved under organic nitrogen sources, such as yeast extract (2.23 g L−1) and glycine (1.62 g L−1), compared to nitrate- (1.45 g L−1) or ammonium-N (0.98 g L−1). All ammonium sources showed an inhibition of cell growth, but accumulated higher lipids, showing a maximum content of 28.3% in ammonium bicarbonate. When Tetraselmis sp. was cultivated using yeast extract, the highest lipid productivity of 36.0 mg L−1 d−1 was achieved, followed by glycine 21.5 mg L−1 d−1 and nitrate 19.9 mg L−1 d−1. Ammonium bicarbonate resulted in the lowest lipid productivity of 14.4 mg L−1 d−1. The major fatty acids in Tetraselmis sp. were palmitic, oleic, linoleic and linolenic acids, regardless of the nutritional compositions, indicating the suitability of this species for biodiesel production.

Growth activation of the microalgae Tetraselmis suecica by the aqueous of the seaweed Monostrama nitidium

  • Cho, Ji-Young;Hong, Yong-Ki
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.201-202
    • /
    • 2001
  • Mass culture of microalgae as feed for mollusc, crustaceans and fish is an important components of the mariculture industry (Metting Jr., 1996) Growth activator for tetraselmis suecica were screened in methanol and water soluble extracts of several seaweed tissues. Also examined in this study were change in growth rate, biochemical composition, and digestion efficiency, of T.suecica cultured with and without the most effective of these extracts, the water soluble component extracted form M. nitidium. (omitted)

  • PDF

Flocculation Effect of Alkaline Electrolyzed Water (AEW) on Harvesting of Marine Microalga Tetraselmis sp.

  • Lee, Su-Jin;Choi, Woo-Seok;Park, Gun-Hoo;Kim, Tae-Ho;Oh, Chulhong;Heo, Soo-Jin;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.432-438
    • /
    • 2018
  • Microalgae hold promise as a renewable energy source for the production of biofuel, as they can convert light energy into chemical energy through photosynthesis. However, cost-efficient harvest of microalgae remains a major challenge to commercial-scale algal biofuel production. We first investigated the potential of electrolytic water as a flocculant for harvesting Tetraselmis sp. Alkaline electrolyzed water (AEW) is produced at the cathode through water electrolysis. It contains mineral ions such as $Na^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ that can act as flocculants. The flocculation activity with AEW was evaluated via culture density, AEW concentration, medium pH, settling time, and ionic strength analyses. The flocculation efficiency was 88.7% at 20% AEW (pH 8, 10 min) with a biomass concentration of 2 g/l. The initial biomass concentration and medium pH had significant influences on the flocculation activity of AEW. A viability test of flocculated microalgal cells was conducted using Evans blue stain, and the cells appeared intact. Furthermore, the growth rate of Tetraselmis sp. in recycled flocculation medium was similar to the growth rate in fresh F/2 medium. Our results suggested that AEW flocculation could be a very useful and affordable methodology for fresh biomass harvesting with environmentally friendly easy operation in part of the algal biofuel production process.

Lifespan and Fecundity of Three Types of Rotifer, Brachionus plicatilis by an Individual Culture (개체배양에 의한 3 Types 윤충(Brachionus plicatilis)의 수명 및 번식력)

  • CABRERA Tomas;HUR Sung Bum;KIM Hyun Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.511-518
    • /
    • 1993
  • The lifespan and fecundity of three types(ultra small, small and large) rotifer, Brachionus plicatilis, were investigated. Generally, the lifespan and fecundity of three types rotifer were better at $25{\sim}27^{\circ}C$ than at $20{\sim}22^{\circ}C$, and this phenomenon was more distinct in the ultra small and the small type rotifers. With regard to salinity, while the ultra small and the large type rotifer prefer.ed low salinity(16ppt) to high salinity(32ppt), fecundity of the small type rotifer was higher at high salinity(32ppt) than at low salinity(16ppt). Suitable food organisms were Tetraselmis tetrathele and Chlorella ellipsoidea for the three types rotifer. Tetraselmis tetrathele was more adequate for the ultra small and large type rotifer as live food. However, Chlorella ellipsoidea showed better dietary value for the small type rotifer.

  • PDF

Comparison of Filtration Efficiency of Membranes for Harvesting Microalgae using a Gravity-Filtration Device (중력 여과장치 이용 미세조류 수확을 위한 여과막의 효율성 비교)

  • Shin, Dong-Woo;Cho, Yonghee;Kim, Ki-Hyun;Kim, HanByeol;Park, Hanwool;Kim, Z-Hun;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Cost-effective microalgae harvesting methods are necessary for economical production of algal biodiesel. In this study, membranes with various pore sizes and materials were examined for their potentials in application to gravity-filtration of Tetraselmis sp. KCTC12432BP. For this test, 10 L of Tetraselmis sp. culture (2 g/L) was loaded on each membrane and filtration rates were measured. Among the tested materials, a woven cotton fabric showed the fastest water drain rate (0.73 L/hr) without serious cell leakage. Cell density of the concentrates after filtration was 6.8 g/L, indicating 3.4-fold concentration compared with the initial algal culture. The result suggests that the woven cotton fabric could serve as filtration membrane for harvesting Tetraselmis sp. among the tested ones.

Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum (해양 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 Aroclor 1016과 비스페놀 A의 독성 효과)

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.306-312
    • /
    • 2016
  • Microalgae are the potential bioindicators of environmental changes, for the environmental risk assessment as well as to set limits for toxic chemical release in the aquatic environment. Here, we evaluated the effects of two endocrine disrupting chemicals (EDCs), namely bisphenol A (BPA) and Aroclor 1016, on the green algae Tetraselmis suecica, diatom Ditylum brightwellii, and dinoflagellate Prorocentrum minimum. Each species showed wide different sensitivity ranges when exposed to these two EDCs; the 72 h effective concentration ($EC_{50}$) for these test species showed that Aroclor 1016 was more toxic than BPA. $EC_{50}$ values for the diatom D. birghtwellii were calculated at 0.037 mg/L for BPA and 0.002 mg/L for Aroclor 1016, representing it was the most sensitive when compared to the other species. In addition, these results suggest that these EDC discharge beyond these concentrations into the aquatic environments may cause harmful effect to these marine species.

Investigation of Microalgal Growth, Tetraselmis sp. KCTC12432BP by Supplying Bicarbonate on the Ocean Cultivation (해양배양기 내 중탄산염 공급에 따른 Tetraselmis sp. KCTC12432BP 증식에 관한 연구)

  • Cho, Yonghee;Shin, Dong-Woo;Lee, Sangmin;Jeon, Hyonam;Ryu, Young-Jin;Lee, Jong-Chan;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.118-122
    • /
    • 2014
  • The ocean provide great benefits for microalgal mass cultures with maintaining stable temperature due to high specific heat, mixing by wave energy, and providing large area for large-scale microalgae cultures. In this study, we cultivated a marine green microalga, Tetraselmis sp. KCTC12432BP, using marine photobioreactors on the ocean for investigating the effect of $NaHCO_3$ concentration on the biomass productivities and evaluating the potential of ocean microalgae culture. The culture medium consist of three fold concentrated f/2-Si with 4 g/L of $NaHCO_3$, which is dissolved in natural seawater. After 11 days of cultivation, the cultures reached stationary phase at biomass concentration of 1.6 g/L. At that time, $NaHCO_3$ concentration of 0, 2, and 4 g/L were fed to the cultures. The daily productivities of 0.11, 0.19, 0.30 g/L/day were attained with feeding rate of 0, 2, and 4 g/L $NaHCO_3$, respectively. Biomass productivity of Tetraselmis sp. KCTC12432BP was a function of the $NaHCO_3$ feeding rate as expected. This research shows that the microalgae can grow with $NaHCO_3$ as carbon source in marine photobioreactors on the ocean while exploiting various benefits of ocean cultivation.

Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp.

  • Han, Mi-Ae;Hong, Seong-Joo;Kim, Z-Hun;Cho, Byung-Kwan;Lee, Hookeun;Choi, Hyung-Kyoon;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.267-274
    • /
    • 2018
  • Lipids in microalgae are energy-rich compounds and considered as an attractive feedstock for biodiesel production. To redirect carbon flux from competing pathways to the fatty acid synthesis pathway of Tetraselmis sp., we used three types of chemical inhibitors that can block the starch synthesis pathway or photorespiration, under nitrogen-sufficient and nitrogen-deficient conditions. The starch synthesis pathway in chloroplasts and the cytosol can be inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 1,2-cyclohexane diamine tetraacetic acid (CDTA), respectively. Degradation of glycine into ammonia during photorespiration was blocked by aminooxyacetate (AOA) to maintain biomass concentration. Inhibition of starch synthesis pathways in the cytosol by CDTA increased fatty acid productivity by 27% under nitrogen deficiency, whereas the blocking of photorespiration in mitochondria by AOA was increased by 35% under nitrogen-sufficient conditions. The results of this study indicate that blocking starch or photorespiration pathways may redirect the carbon flux to fatty acid synthesis.

Effect of Copper on Marine Microalga Tetraselmis suecica and its Influence on Intra- and Extracellular Iron and Zinc Content

  • Kumar, K. Suresh;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.16-28
    • /
    • 2017
  • In an aquatic environment, toxicity of metals to organisms depends on external factors (type of metal, exposure concentration and duration, environmental parameters, and water quality) and intracellular processes(metal-binding sites and detoxification). Toxicity of copper(Cu) on the marine microalga Tetraselmis suecica was investigated in this study. Dose-dependent (Cu concentration dependent) inhibition of growth and cell division, as well as, variation of intra- and extra-cellular Cu, Fe and Zn content was observed. T. suecica was sensitive to Cu; the 96 h $EC_{50}$ (concentration to inhibit growth-rate by 50%) of growth rate (${\mu}$) ($21.73{\mu}M\;L^{-1}$), cell division $day^{-1}$ ($18.39{\mu}M\;L^{-1}$), and cells $mL^{-1}$ ($13.25{\mu}M\;L^{-1}$) demonstrate the toxicity of Cu on this microalga. High intra-($19.86Pg\;cell^{-1}$) and extra-cellular($54.73Pg\;cell^{-1}$) Cu concentrations were recorded, on exposure to 24.3 and $72.9{\mu}M\;L^{-1}$ of Cu.

Quantification of the Sub-lethal Toxicity of Metals and Endocrine-disrupting Chemicals to the Marine Green Microalga Tetraselmis suecica

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.187-194
    • /
    • 2013
  • Microalgae are sensitive indicators of environmental changes, and hence they are widely used in environmental risk assessments and for the development of discharge guidelines. Here we evaluated the toxicity of metals and endocrine-disrupting chemicals (EDCs) to the marine green microalga, Tetraselmis suecica. The toxicants investigated included the metals, Cu, Ni, and Pb; and the EDCs, bisphenol A (BPA), endosulfan (ES), and polychlorinated biphenyl (PCB). The endpoints were variations in cell counts and chlorophyll a levels. T. suecica displayed a varied pattern of sensitivity to the toxicants. Based on the 72-h median effective concentration ($EC_{50}$), ES (0.045 mg/L) was most toxic to T. suecica, followed by PCB (3.96 mg/L) and Pb (9.62 mg/L). Interestingly, T. suecica was relatively tolerant to Cu (43.03 mg/L). The 72-h $EC_{50}$ values of Ni and BPA were approximately 16 mg/L. Our data suggest that this species may be relatively tolerant to most of the chemicals within their permissible limits in the environment.