• Title/Summary/Keyword: Tetragonal zirconia polycrystal

Search Result 35, Processing Time 0.019 seconds

Properties of translucent zirconia and lithium disilicate glass-ceramics: a literature review (반투명 지르코니아와 리튬디실리케이트 결정화유리의 물성에 관한 문헌고찰)

  • Cha, Min-Sang;Kim, Ye-Jin;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.2
    • /
    • pp.71-80
    • /
    • 2022
  • Although low translucency 3 mol% yttria stabilized tetragonal zirconia polycrystal has excellent mechanical properties, it has limited application as a monolithic prosthesis. To improve these optical limitations, translucent zirconia has improved esthetics due to an increase in the cubic phase; however, it is accompanied by a decrease in mechanical properties simultaneously. Lithium disilicate has improved its mechanical properties through crystal size reduction and various heat treatment methods; therefore, its clinical application range is continuously increasing. Translucent zirconia shows a wide distribution of physical properties depending on the yttria content and lithium disilicate according to the size and density of crystal grains. As a result, the indications for translucent zirconia and lithium disilicate are increasing. Therefore, in this literature review, we intend to examine the rationale behind the material selection criteria in clinical situations and considerations for designing fixed dental prostheses including pontic, in particular, by summarizing recent studies.

Effect of hydrofluoric acid-based etchant at an elevated temperature on the bond strength and surface topography of Y-TZP ceramics

  • Yu, Mi-Kyung;Lim, Myung-Jin;Na, Noo-Ri;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2020
  • Objectives: This study investigated the effects of a hydrofluoric acid (HA; solution of hydrogen fluoride [HF] in water)-based smart etching (SE) solution at an elevated temperature on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics in terms of bond strength and morphological changes. Materials and Methods: Eighty sintered Y-TZP specimens were prepared for shear bond strength (SBS) testing. The bonding surface of the Y-TZP specimens was treated with 37% phosphoric acid etching at 20℃-25℃, 4% HA etching at 20℃-25℃, or HA-based SE at 70℃-80℃. In all groups, zirconia primers were applied to the bonding surface of Y-TZP. For each group, 2 types of resin cement (with or without methacryloyloxydecyl dihydrogen phosphate [MDP]) were used. SBS testing was performed. Topographic changes of the etched Y-TZP surface were analyzed using scanning electron microscopy and atomic force microscopy. The results were analyzed and compared using 2-way analysis of variance. Results: Regardless of the type of resin cement, the highest bond strength was measured in the SE group, with significant differences compared to the other groups (p < 0.05). In all groups, MDP-containing resin cement yielded significantly higher bond strength values than MDP-free resin cement (p < 0.05). It was also shown that the Y-TZP surface was etched by the SE solution, causing a large change in the surface topography. Conclusions: Bond strength significantly improved when a heated HA-based SE solution was applied to the Y-TZP surface, and the etched Y-TZP surface was more irregular and had higher surface roughness.

The effect of continuous application of MDP-containing primer and luting resin cement on bond strength to tribochemical silica-coated Y-TZP

  • Lim, Myung-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2018
  • Objectives: This study investigated the effect of continuous application of 10-methacryloyloxydecyldihydrogen phosphate (MDP)-containing primer and luting resin cement on bond strength to tribochemical silica-coated yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Materials and Methods: Forty bovine teeth and Y-TZP specimens were prepared. The dentin specimens were embedded in molds, with one side of the dentin exposed for cementation with the zirconia specimen. The Y-TZP specimen was prepared in the form of a cylinder with a diameter of 3 mm and a height of 10 mm. The bonding surface of the Y-TZP specimen was sandblasted with silica-coated aluminium oxide particles. The forty tribochemical silica-coated Y-TZP specimens were cemented to the bovine dentin (4 groups; n = 10) with either an MDP-free primer or an MDP-containing primer and either an MDP-free resin cement or an MDP-containing resin cement. After a shear bond strength (SBS) test, the data were analyzed using 1-way analysis of variance and the Tukey test (${\alpha}=0.05$). Results: The group with MDP-free primer and resin cement showed significantly lower SBS values than the MDP-containing groups (p < 0.05). Among the MDP-containing groups, the group with MDP-containing primer and resin cement showed significantly higher SBS values than the other groups (p < 0.05). Conclusions: The combination of MDP-containing primer and luting cement following tribochemical silica coating to Y-TZP was the best choice among the alternatives tested in this study.

Change of phase transformation and bond strength of Y-TZP with various hydrofluoric acid etching

  • Mi-Kyung Yu;Eun-Jin Oh;Myung-Jin Lim;Kwang-Won Lee
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.54.1-54.10
    • /
    • 2021
  • Objectives: The purpose of this study was to quantify phase transformation after hydrofluoric acid (HF) etching at various concentrations on the surface of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), and to evaluate changes in bonding strength before and after thermal cycling. Materials and Methods: A group whose Y-TZP surface was treated with tribochemical silica abrasion (TS) was used as the control. Y-TZP specimens from each experimental group were etched with 5%, 10%, 20%, and 40% HF solutions at room temperature for 10 minutes. First, to quantify the phase transformation, Y-TZP specimens (n = 5) treated with TS, 5%, 10%, 20% and 40% HF solutions were subjected to X-ray diffraction. Second, to evaluate the change in bond strength before and after thermal cycling, zirconia primer and MDP-containing resin cement were sequentially applied to the Y-TZP specimen. After 5,000 thermal cycles for half of the Y-TZP specimens, shear bond strength was measured for all experimental groups (n = 10). Results: The monoclinic phase content in the 40% HF-treated group was higher than that of the 5%, 10%, and 20% HF-treated groups, but lower than that of TS-treated group (p < 0.05). The 40% HF-treated group showed significantly higher bonding strength than the TS, 5%, and 10% HF-treated groups, even after thermal cycling (p < 0.05). Conclusions: Through this experiment, the group treated with SiO2 containing air-borne abrasion on the Y-TZP surface showed higher phase transformation and higher reduction in bonding strength after thermal cycling compared to the group treated with high concentration HF.

A Study on the Shear Bond Strength of Veneering Ceramics to the Lithium Disilicate (IPS e.max CAD) Core (Lithium Disilicate (IPS e.max CAD) 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2013
  • The purpose of this study was to investigate the shear bond strength between various commercial all-ceramic system core and veneering ceramics, and evaluate the clinical stability by comparing the conventional metal ceramic system. The test samples were divided into three groups: Ni-Cr alloy (metal bond), yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP) (zirconia bond), lithium disilicate (lithium disilicate bond). The veneering porcelain recommended by the manufacturer for each type of material was fired to the core. After firing, the specimens were subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.50 mm/min until failure. Average shear strengths (mega pascal) were analyzed with a one-way analysis of variance and the Tukey test (${\alpha}$=0.05). The mean shear bond strength${\pm}$SD in MPa was $44.79{\pm}2.31$ in the Ni-Cr alloy group, $28.32{\pm}4.41$ in the Y-TZP group, $15.91{\pm}1.39$ in the Lithium disilicate group. The ANOVA showed a significant difference among groups (p<0.05). None of the all-ceramic system core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.