• Title/Summary/Keyword: Tetradentate schiff base

Search Result 30, Processing Time 0.021 seconds

Selective Oxidation of 2,6-di-tert-butylphenol and Electrochemical Properties by Oxygen Adducted Tetradentate Schiff Base Cobalt (Ⅲ) Activated Catalysts in Aprotic Solvents (비수용매에서 산소 첨가된 네자리 Schiff Base Cobalt(Ⅲ) 활성 촉매들에 의한 2,6-di-tert-butylphenol의 선택 산화와 전기화학적 성질)

  • Jo, Gi Hyeong;Choe, Yong Guk;Ham, Hui Seok;Kim, Sang Bok;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.569-581
    • /
    • 1990
  • It is generated in DMF by activated catalysts of superoxo cobalt(III) complex, such as [Co(III)(Schiff base)(L)]O$_2$ (Schiff base; SED, SOPD and o-BSDT, L; DMF and Py) which mole ratio of oxygen to metal is 1:1 that oxidation major product of 2,6-di-tert-butylphenol by homogeneous oxidatve catalysts of oxygen adducted tetradentate Schiff base cobalt(III) is 2,6-ditert-butylbenzoquinone (BQ). And oxidation product of 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) is generated by activated catalysts such as $\mu$-peroxo cobalt(III) complex; $[Co(III)(SND)(L)]_2$$O_2$ (L; DMF and Py) which mole ratio of oxygen to metal is 1:2. It is difficult to identify these homogeneous activated catalysts such as superoxo and $\mu$-peroxo cobalt(III) complexes in DMF and DMSO solvents. But we can identify by P.V.T method of the oxygen absorption in pyridine solvent and by the reduction process occurred to four steps including prewave of O$_2$- in 1:1 oxygen adducted superoxo cobalt(III) complexes and three steps not including prewave of O$_2$- in 1:2 oxygen adducted $\mu$-peroxo cobalt(III) complexes by the cyclic voltammetry with glassy carbon electrode in 0.1 M TEAP as supporting electrolyte solutidn.

  • PDF

Studies on electrocatalytic effects of LiAlCl4/SOCl2 cell by tetradentate Schiff base metal(II) complexes (네자리 Schiff base 금속(II) 착물들에 의한 LiAlCl4/SOCl2 전지의 전기촉매 효과에 대한 연구)

  • Sim, Woo-Jong;Jeong, Byeong-Goo;Na, Kee-su;Chjo, Ki-Hyung;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.416-423
    • /
    • 1996
  • Electrochemical reduction of thionyl chloride in 1.5 M $LiAlCl_4/SOCl_2$ electrolyte solution containing tetradentate Schiff base Co(II), Ni(II), Cu(II), and Mn(II) complexes has been investigated at the glassy carbon electrode. The catalyst molecules of transition metal(II) complexes were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. There was an optimum concentration for each catalyst compound. The current density of $SOCl_2$ reduction was enhanced up to 150% at the catalyst contained electrolyte solution. The reduction currents of thionyl chloride were increased and the reduction potentials were shifted to the negative potential as scan rates became faster. The reduction of thionyl chloride was proceeded to diffusion controlled reaction.

  • PDF

Electrochemical Reduction of Thionyl Chloride by Tetradentate Schiff Base Transition Metal(II) Complexes : Catalytic Effects (네자리 Schiff Base 전이금속(II) 착물들에 의한 SOCl$_2$의 전기화학적 환원 : 촉매 효과)

  • Woo-Seong Kim;Yong-Kook Choi;Chan-Young Kim;Ki-Hyung Chjo;Jong-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.702-710
    • /
    • 1993
  • Electrochemical reduction of thionyl chloride has been carried out at glassy carbon and molybdenum electrodes, the surface of which is modified by binuclear tetradentate schiff base Co(II), Ni(II),Cu(II) and Fe(II) complexes. The catalyst molecules of transition metal(II) complexes were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. There was an optimum concentration for each catalyst compound. The catalytic effects of SOCl$_2$ reduction were larger on glassy carbon electrodes compared to molybdenum electrodes and enhancements in reduction current of up to 120${\%}$ at the glassy carbon electrodes. The reduction currents of thionyl chloride were increased and the reduction potentials were shifted to the negative potential when scan rates became faster. The reduction of thionyl chloride was proceed to diffusion controlled reaction.

  • PDF

Sythesis and Characterization of Transition Metal(II) Complexes with $NOTDH_2$ Schiff Base ($NOTDH_2$ Schiff Base를 가진 전이금속(II) 착물의 합성과 구조분석)

  • Oh, Jeong-Geun;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.498-503
    • /
    • 1999
  • Co(II), Ni(II), and Cu(II) complexes with tetradentate schiff base-$NOTDH_2$, were synthesized. The structures of these complexes were characterized by elemental analysis, IR, UV-visible, NMR spectra, and thermogravimetric analysis. The mole ratio of schiff base($NOTDH_2$) to the metal(II) at complexes was found to be 1:1. Cu(II) complexes were four-coordinated configuration, while Co(II) and Ni(II) complexes were hexacoordinated configuration containing two water molecules and all complexes were non-ionic compounds.

  • PDF

Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II)

  • Joseyphus, R. Selwin;Nair, M. Sivasankaran
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • Two Schiff base ligands $L_1\;and\;L_2$ were obtained by the condensation of glycylglycine respectively with imidazole-2-carboxaldehyde and indole-3-carboxaldehyde and their complexes with Zn(II) were prepared and characterized by microanalytical, conductivity measurement, IR, UV-Vis., XRD and SEM. The molar conductance measurement indicates that the Zn(II) complexes are 1:1 electrolytes. The IR data demonstrate the tetradentate binding of $L_1$ and tridentate binding of $L_2$. The XRD data show that Zn(II) complexes with $L_1\;and\;L_2$ have the crystallite sizes of 53 and 61 nm respectively. The surface morphology of the complexes was studied using SEM. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by the disc diffusion method. A comparative study of inhibition values of the Schiff base ligands and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. Zinc ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium.

Synthesis, Characterization and Liquid Phase Oxidation of Cyclohexane with Hydrogen Peroxide over Oxovanadium(IV) Schiff-base Tetradendate Complex Covalently Anchored to Multi-Wall Carbon Nanotubes (MWNTs)

  • Salavati-Niasari, Masoud;Bazarganipour, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.355-362
    • /
    • 2009
  • The chemical modification of multi-wall carbon nanotubes (MWNTs) is an emerging area in material science. In the present study, hydroxyl functionalized oxovanadium(IV) Schiff-base; N,N'-bis(4-hydroxysalicylidene)-ethylene-1, 2-diamineoxovanadium(IV), [VO($(OH)_2$-salen)]; has been covalently anchored on modified MWNTs. The new modified MWNTs ([VO($(OH)_2$-salen)]-MWNTs]) have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron (XPS), UV-Vis, Diffuse reflectance (DRS), FT-IR spectroscopy and elemental analysis. The analytical data indicated a composition corresponding to the mononuclear complex of tetradentate Schiff-base ligand. The characterization of the data showed the absence of extraneous complex, retention of MWNTs and covalently anchored on modified MWNTs. Liquid-phase oxidation of cyclohexane with $H_2O_2$ to a mixture of cyclohexanone, cyclohexanol and cyclohexane-1,2-diol in $CH_3$CN have been reported using oxovanadium(IV) Schiff-base complex covalently anchored on modified MWNTs as catalysts. This catalyst is more selective toward cyclohexanol formation.

Synthesis and Characterization of Some Transition Metal Complexes of Unsymmetrical Tetradentate Schiff Base Ligand (비대칭 Tetradentate Schiff 염기 리간드의 전이금속 착물에 대한 합성 및 특성)

  • Munde, A. S.;Jagdale, A. N.;Jadhav, S. M.;Chondhekar, T. K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • The solid complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with 4-hydroxy-3-(1-{2-(2-hydroxybenzylidene)- amino phenylimino}-ethyl)-6-methy-pyran-2-one (H2L) derived from o-phenylenediamine, 3-acetyl- 6-methyl-(2H) pyran, 2,4 (3H)-dione (dehydroacetic acid or DHA) and salicylic aldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, IR, $^1H$-NMR spectra, X-ray diffraction, thermal analysis, and screened for antimicrobial activity. The IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests square planar geometry for Cu(II) and Ni(II) complexes and octahedral geometry for Co(II), Mn(II) and Fe(III) complexes. The x-ray differaction data suggests orthorhombic crystal system for Cu(II) complex, monoclinic crystal system for Ni(II), Co(II) and Fe(III) and tetragonal crystal system for Mn(II) complex. Thermal behaviour (TG/DTA) of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus Niger and Trichoderma.

Electrochemical Properties of Cobalt(II) Schiff Base Complexes in Nonaqueous Solvent (비수용매에서 Schiff Base를 가진 Cobalt(II) 착물들의 전기화학적 성질)

  • Oh, Jeong-Geun;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.97-101
    • /
    • 2002
  • Co(II) complexes with tridentate Schiff base-NOIPH and tetradentate Schiff base-$NOTDH_2$ and $TNBPH_4$ were synthesized. The redox process of the complexes in DMF solution containing 0.1M TBAP was investigated at glassy carbon electrode by cyclic voltammetry and differential pulse voltammetry techniques. Reduction step of [Co(II)$(NOIP)_2$] and [Co(II)$(H_2O)_2$] complexes were observed in two step as one electron process of irreversible or quasi-reversible and diffusion-controlled reaction. [$Co(II)_2$(TNBP)] complex was observed in one step as one electron process of quasi-reversible and diffusion-controlled reaction.

Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand

  • Maldhure, A. K.;Pethe, G. B.;Yaul, A. R.;Aswar, A. S.
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.215-224
    • /
    • 2015
  • Unsymmetrical tetradentate Schiff base N-(2-hydroxy-5-methylacetophenone)-N'-(2-hydroxy acetophenone) ethylene diamine (H2L) and its complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, IR, electronic spectra and thermogravimetric analyses. 1H, 13C-NMR and FAB Mass spectra of ligand clearly indicate the presence of OH and azomethine groups. Elemental analyses of the complexes indicate that the metal to ligand ratio is 1:1 in all complexes. Infrared spectra of complexes indicate a dibasic quadridentate nature of the ligand and its coordination to metal ions through phenolic oxygen and azomethine nitrogen atoms. The thermal behavior of these complexes showed the loss of lattice water in the first step followed by decomposition of the ligand in subsequent steps. The thermal data have also been analyzed for the kinetic parameters by using Horowitz-Metzger method. The dependence of the electrical conductivity on the temperature has been studied over the temperature range 313-403 K and the complexes are found to show semiconducting behavior. XRD and SEM images of some representative complexes have been recorded. The antimicrobial activity of the ligand and its complexes has been screened against various microorganisms and all of them were found to be active against the test organisms. The Fe(III) and Ni(II) complex have been tested for the catalytic oxidation of styrene.