• Title/Summary/Keyword: Tetradecane

Search Result 43, Processing Time 0.017 seconds

Quality evaluations of bell pepper in cold system combined with TEM (thermoelectric materials) and PCM (phase change material) (PCM을 장착한 열전소자 냉각시스템의 저장 중 피망의 품질 평가)

  • Sung, Jung-Min;Kim, So-Hee;Kim, Byeong-Sam;Kim, Jong-Hoon;Kim, Ji-Young;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2016
  • For the distribution of fresh produce, the thermoelectric cooling system combined with thermo electric materials (TEM) and phase change material (PCM) was studied. The PCM used this study was produced by in-situ polymerization technology which referred microencapsulation of hydrocarbon (n-tetradecane and n-hexadecane). In this study, quality characteristics of bell peppers in thermoelectric cooling system combined with TEM and PCM were analyzed and control was placed in an EPS (expanded polystyrene) box. As a result of quality characteristics analysis, weight of bell peppers decreased and moisture content of bell peppers was 90.96~94.43% during storage. Vitamin C content of bell pepper decreased during storage and reduction ratio of control was higher than that of BPT-5 treatment(bell pepper in thermoelectric cooling system with PCM which is kept the temperature at $5^{\circ}C$). The result of color value, on 21 day, ${\Delta}E$ value of BPT-5 treatment was 5.05 while that of control was 41.8. On 21 day, total bacteria count of BPT-5 treated bell pepper shown less than that of control. In conclusion, it suggested that the thermoelectric cooling system combined with PCM improved quality of fresh produce during transportation and storage.

Structures of OH Emulsion Prepared with Saccharide Surfactants (당류계 계면활성제로 제조된 O/W 에멀젼의 구조)

  • 홍세흠;한창규;조춘구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.261-274
    • /
    • 2000
  • The o/w emulsions were prepared with saccharide surfactants which were sucrose monostearate(S160), sucrose distearate(S110), and POE(20) methyl glucose stearate(SSE20). And for emulsion the oils used were n-hydocarbon, squalane(SQ), liquid paraffin(LP), octylpalmitate(OP), octylstearate(OS), alkyl benzoate(AB), isostearyl benzoate(ISB). The structures of o/w emulsion droplet were investigated by laser light scattering and the fractal dimensions were calculated from light intensity curves. Increasing of concentration, chain length, and nonpolarity of oils, fractal dimensions of emulsion droplets were found greater. In general fiactal dimensions were varied from 1.7 to 2.8 and its structures were fractal But the fractal dimensions of octadecane( $C_{18}$), 50, and LP emulsified with S110 and S160 were varied from 3.0 to 3.2 and its structures were more dense. The overall fractal dimensions of S110 and S160 were varied from 2.1 to 2.6, that of SSE20 were varied from 1.5 to 2.1. So it was found that the structures of SSE20 system were less compact than that of S110 and S 160 system, because the hindrance effect of polyoxyehtylene group of SSE20 was stronger than that of sucrose of S160. The strucures of emulsion droplets changed according to the nature of emulsifiers and to compositions of oil substances which they contained, and the structures were found similar when the hydophilic moiety of emulsifiers was same.

  • PDF

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.