• Title/Summary/Keyword: Tetrachloroaurate ion

Search Result 2, Processing Time 0.016 seconds

Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode

  • Song, Ji-Seon;Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1983-1987
    • /
    • 2008
  • This study demonstrates the electrochemical conversion of the synthetic procedure of monolayer-protected clusters using a thin toluene layer over an edge plane pyrolytic graphite electrode. A thin toluene layer with a thickness of 0.31 mm was coated over the electrode and an immiscible liquid/liquid water/toluene interface was introduced. The transfer of the tetrachloroaurate ($AuCl_4^-$) ions into the toluene layer interposed between the aqueous solution and the electrode surface was electrochemically monitored. The $AuCl_4^-$ ions initially could not move through into the toluene layer, showing no reduction wave, but, in the presence of the phase transfer reagent, tetraoctylammonium bromide (TOABr), a cathodic wave at 0.23 V vs. Ag/AgCl was observed, indicating the reduction of the transferred $AuCl_4^-$ ions in the toluene layer. In the presence of dodecanethiol together with TOABr, a self-assembled monolayer was formed over the electro-deposited metallic gold surface. The E-SEM image of the surface indicates the formation of a highly porous metallic gold surface, rather than individual nanoparticles, over the EPG electrode.

A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions

  • Song, Ji-Seon;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1683-1688
    • /
    • 2007
  • This paper presents a novel simple method for introducing gold nanoparticles in a poly(4-vinylpyridine) (PVP) polymer layer over a glassy carbon (GC) electrode with the aim of forming a tunable electrochemical interface against a cationic ruthenium complex. Initially, AuCl4 ? ions were spontaneously incorporated into a polymer layer containing positively charged pyridine rings in an acidic media by ion exchange. A negative potential was then applied to electrochemically reduce the incorporated AuCl4 ? ions to gold nanoparticles, which was confirmed by the FE-SEM images. The PVP layer with an appropriate thickness over the electrode blocked electron transfer between the electrode and the solution phase for the redox reactions of the cationic Ru(NH3)6 2+ ions. However, the introduction of gold nanoparticles into the polymer layer recovered the electron transfer. In addition, the electron transfer rate between the two phases could be tuned by controlling the number density of gold nanoparticles.