• Title/Summary/Keyword: Testing Machine

Search Result 1,604, Processing Time 0.028 seconds

Development of the Predicted Model for the HMA Dynamic Modulus by using the Impact Resonance Testing and Universal Testing Machine (충격공진실험과 만능재료시험기에 의한 아스팔트 공시체의 동탄성계수 예측 모델 개발)

  • Kim, Do Wan;Kim, Dong-Ho;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.43-50
    • /
    • 2014
  • PURPOSES : The dynamic modulus can be determined by applying the various theories from the Impact Resonance Testing(IRT) Method. The objective of this paper is to determine the best theory to produce the dynamic modulus that has the lowest error as the dynamic modulus data obtained from these theories(Complex Wave equation Resonance Method related to either the transmissibility loss or not, Dynamic Stiffness Resonance Method) compared to the results for dynamic modulus determined by using the Universal Testing Machine. The ultimate object is to develop the predictive model for the dynamic modulus of a Linear Visco-Elastic specimen by using the Complex Wave equation Resonance Method(CWRM) came up for an existing study(S. O. Oyadiji; 1985) and the Optimization. METHODS : At the destructive test which uses the Universal Testing Machine, the dynamic modulus results along with the frequency can be used for determining the sigmoidal master curve function related to the reduced frequency by applying Time-Temperature Superposition Principle. RESULTS : The constant to be solved from Eq. (11) is a value of 14.13. The reduced dynamic modulus obtained from the IRT considering the loss factor related to the impact transmissibility has RMSE of 367.7MPa, MPE of 3.7%. When the predictive dynamic modulus model was applied to determine the master curve, the predictive model has RMSE of 583.5MPa, MPE of 3.5% compared to the destructive test results for the dynamic modulus. CONCLUSIONS : Because we considered that the results obtained from the destructive test had the most highest source credibility in this study, the dynamic modulus data obtained respectively from DSRM, CWRM were compared to the results obtained from the destructive test by using th IRT. At the result, the reduced dynamic modulus derived from DSRM has the most lowest error.

Performance Evaluation and Design of an Edible Fresh Corn Harvesting Machine (식용 풋옥수수 수확 시험장치 설계 및 성능평가)

  • Kang, Na Rae;Choi, Il Su;Kim, Young Keun;Choi, Yong;Yu, Seung Hwa;Woo, Jea Keun;Hyun, Chang Sik;Kim, Sung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • In this study, an edible fresh corn harvest testing machine was designed and manufactured. And harvesting performance was analyzed through the field test. The testing machine is of the tractor attached type. It is connected to the tractor PTO shaft to transfer power to the each part of the harvesting machine. And it harvests fresh corn by one row through the processes of cutting, stem crushing, detaching, and collecting. The performance test was performed at PTO speed (540, 750, 1050 rpm, respectively), working speed (0.1, 0.15, 0.2 m/s, respectively), and cropping cultivation (row spacing·hill spacing 70·25 cm, 70·40 cm, 90·30 cm, respectively). The performance test was repeated three times in the 15 m section. The detachment loss ratio, uncollected crop ratio, damage ratio, and harvest ratio were analyzed. As a result of the performance test, it was analyzed that the PTO speed 540 rpm, running speed of 0.1 m/s, and row spacing·hill spacing 70·40 cm were the optimal condition.

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

  • Malhotra, Ruchika;Jangra, Ravi
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.778-804
    • /
    • 2017
  • Software today has become an inseparable part of our life. In order to achieve the ever demanding needs of customers, it has to rapidly evolve and include a number of changes. In this paper, our aim is to study the relationship of object oriented metrics with change proneness attribute of a class. Prediction models based on this study can help us in identifying change prone classes of a software. We can then focus our efforts on these change prone classes during testing to yield a better quality software. Previously, researchers have used statistical methods for predicting change prone classes. But machine learning methods are rarely used for identification of change prone classes. In our study, we evaluate and compare the performances of ten machine learning methods with the statistical method. This evaluation is based on two open source software systems developed in Java language. We also validated the developed prediction models using other software data set in the same domain (3D modelling). The performance of the predicted models was evaluated using receiver operating characteristic analysis. The results indicate that the machine learning methods are at par with the statistical method for prediction of change prone classes. Another analysis showed that the models constructed for a software can also be used to predict change prone nature of classes of another software in the same domain. This study would help developers in performing effective regression testing at low cost and effort. It will also help the developers to design an effective model that results in less change prone classes, hence better maintenance.

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

Study on the Compatibility for an Ir-192 Source Manufactured by Korea Atomic Energy Research Institute (KAERI) in GammaMed Brachytherapy Machine (한국원자력연구소에서 개발한 Ir-192 선원의 감마메드 치료기 호환성 연구)

  • Jeong, Dong-Hyeok;Lee, Kang-Kyoo;Kim, Soo-Kon;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2010
  • The compatibility with GammaMed-12i brachytherapy machine for an Ir-192 encapsulated source (IRRS20, KAERI, Korea) manufactured by Korea atomic energy research institute (KAERI) has been investigated. As a mechanical testing of compatibility, precise measurement of step movement with channels, measurement of curvature of radius for wire, and emergency return testing were performed. Periodic measurements of air kerma strength for 45 days were carried out to evaluate decay characteristics of Ir-192 radioisotope and comparison of dose distributions in phantom between KAERI and old sources previously used were performed by film dosimetry. KAERI source has a good compatibility with GammaMed12i machine as a result of mechanical testing. There are in good agreement with calculated values in activity characteristics and there were small differences in dose distributions around the source in comparison between KAERI and old source.

A Study on Dynamic Material Properties of Functional High Explosive Formulation Simulant Subjected to Dynamic Loading (동적하중을 받는 기능성 고폭화약조성 시뮬런트 재료물성 연구)

  • Park, Jungsu;Yeom, Kee Sun;Park, Chunghee;Jeong, Sehwan;Lee, Keundeuck;Huh, Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.857-866
    • /
    • 2013
  • This paper is concerned with the material properties of functional high explosive(FHX) simulant at various strain rates ranging from $10^{-4}/sec$ to $10^1/sec$. Material properties of FHX at high strain rates are important in prediction of deformation modes of FHX in a warhead which undergoes dynamic loading. Inert FHX stimulant which has analogous mechanical properties with FHX was utilized for material tests due to safety issues. Uniaxial tensile tests at quasi-static strain rates ranging from $10^{-4}/sec$ to $10^{-2}/sec$ and intermediate strain rates ranging from $10^{-1}/sec$ to $10^1/sec$ were conducted with JANNAF specimen using a tensile testing machine, INTRON 5583, and developed high speed material testing machine, respectively. Uniaxial compressive tests at quasi-static strain rates and intermediate strain rates were conducted with cylindrical specimen using a dynamic materials testing machine, INSTRON 8801. And cyclic compressive loading tests were performed with various strain rates and strains. Deformation behaviors were investigated using captured images obtained from a high-speed camera.