• Title/Summary/Keyword: Test-Sheet-Generating Algorithm

Search Result 2, Processing Time 0.015 seconds

Design and Implementation of Genetic Test-Sheet-Generating Algorithm Considering Uniformity of Difficulty (난이도 균일성을 고려한 유전자 알고리즘 기반 평가지 생성 시스템의 설계 및 구현)

  • Song, Bong-Gi;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.912-922
    • /
    • 2007
  • Evaluation of distance teaming systems needs a method that maintains a consistent level of difficulty for each test. In this paper, we propose a new algorithm for test sheet generation based on genetic algorithm. Unlike the existing methods that difficulty of each test item is assigned by tutors, in the proposed method, that can be adjusted by the result of the previous tests and the average difficulty of test sheet can be consistently reserved. We propose the new genetic operators to prevent duplications of test items in a test sheet and apply the adjusted difficulty of each test item. The result of simulation shows that difficulty of the test sheet generated by proposed method can be more regular than the random method and the simulated annealing method.

  • PDF

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.